0000000000122004

AUTHOR

Piotr Czaja

Electrical transport in lead-free (Na0.5Bi0.5)1–xSrxTiO3 ceramics (x = 0, 0.01 and 0.02)

Lead-free (Na0.5Bi0.5)1xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were manufactured through a solid-state mixed oxide method and their ac (σac) and dc (σdc) electric conductivity were studied. It is ...

research product

SrTiO3-doping effect on dielectric and ferroelectric behavior of Na0.5Bi0.5 TiO3 ceramics

Lead-free (Na0.5Bi0.5)1-xSrxTiO3 ceramics (x = 0–0.04) were synthesized by a conventional mixed-oxide technique. The microstructure study showed a dense structure, in good agreement with that of ab...

research product

Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics

ABSTRACTThermal expansion, Raman and dielectric properties of the lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corre…

research product

Physical properties and microstructure characteristics of (1–x)BaTiO3–xCaTiO3 systems

The study investigates the microstructure, thermal and mechanical properties of (1–x)BaTiO3–xCaTiO3 ((1–x)BT–xCT)) (x = 0.01, 0.04, 0.08) samples. The BT–CT system to be tested was formed as a soli...

research product

Influence of uniaxial pressure on dielectric properties of (1- x )Na 0.5 Bi 0.5 TiO 3– x SrTiO 3 for x = 0.01, 0.04, and 0.1 ceramics

The publication costs of this article were covered by the Estonian Academy of Sciences and the University of Tartu.

research product