0000000000122237
AUTHOR
Albert Escuer
Nickel(II) Coordination Clusters Based on N-salicylidene-4-chloro-oaminophenol: Synthetic and Structural Studies
New structural motifs in Mn cluster chemistry from the ketone/gem-diol and bis(gem-diol) forms of 2,6-di-(2-pyridylcarbonyl)pyridine: {MnII4MnIII2} and {MnII4MnIII6} complexes
The employment of the tripyridyl/diketone ligand 2,6-di-(2-pyridylcarbonyl)pyridine [(py)CO(py)CO(py)], in conjunction with azides (N3−), in Mn cluster chemistry has afforded the mixed-valence (II/III) complexes [MnII4MnIII2(N3)6Cl4(L1)2(DMF)4] (1) and [MnII4MnIII6O2(N3)12(L1)2(L2H)2(DMF)6] (2) in good yields. The resulting ligands L12− and L2H3− are the dianion and trianion of the ketone/gem-diol (L1H2) and bis(gem-diol) (L2H4) forms of (py)CO(py)CO(py), respectively, as derived from the metal-assisted hydrolysis of the parent dicarbonyl organic compound. Under the same synthetic conditions (i.e., reaction solvents, temperature and stirring time), the chemical identity of the two complexes…
Further synthetic investigation of the general lanthanoid(iii) [Ln(iii)]/copper(ii)/pyridine-2,6-dimethanol/carboxylate reaction system: {CuII5LnIII4} coordination clusters (Ln = Dy, Tb, Ho) and their yttrium(iii) analogue
In addition to previously studied {CuII3Gd6}, {CuII8Gd4}, {CuII15Ln7} and {CuII4Ln8} coordination clusters (Ln = trivalent lanthanide) containing pdm2− or Hpdm− ligands (H2pdm = pyridine-2,6-dimethanol) and ancillary carboxylate groups (RCO2−), the present work reports the synthesis and study of three new members of a fifth family of such complexes. Compounds [Cu5Ln4O2(OMe)4(NO3)4(O2CCH2But)2(pdm)4(MeOH)2] (Ln = Dy, 1; Ln = Tb, 2; Ln = Ho, 3) were prepared from the reaction of Ln(NO3)3·xH2O (x = 5, 6), CuX2·yH2O (X = ClO4, Cl, NO3; y = 6, 2 and 3, respectively), H2pdm, ButCH2CO2H and Et3N (2 : 2.5 : 2 : 1 : 9) in MeCN/MeOH. Rather surprisingly, the copper(II)/yttrium(III) analogue has a sli…
Structural and magnetic studies of mononuclear lanthanide complexes derived from Ν-rich chiral Schiff bases.
Zn(II) complexes containing N, N,N and N,N,N pyridine (dPy) ligands tend to display improved fluorescence efficiencies in comparison with their starting ligands benefiting from the chelation enhanced effect (CHEF) and preventing photoinduced electron transfer (PET) mechanisms by the coordination of their lone pair electrons. Nevertheless, the size of Zn(II) makes steric crowding an important factor to be considered, since it can promote the elongation of the coordination bonds that weakens their strength and favors the reduction of fluorescence efficiencies through PET processes. For that reason, in this contribution we have performed a systematic study of Zn(II) compounds based on α-acetam…
A biocompatible ZnNa2-based metal–organic framework with high ibuprofen, nitric oxide and metal uptake capacity
Metal organic frameworks (MOFs) have received significant attention in recent years in the areas of biomedical and environmental applications. Among them, mixed metal MOFs, although promising, are relatively few in number in comparison with their homometallic analogues. The employment of benzophenone-4,4′-dicarboxylic acid (bphdcH2) in mixed metal MOF chemistry provided access to a 3D MOF, [Na2Zn(bphdc)2(DMF)2]n (NUIG1). NUIG1 displays a new topology and is a rare example of a mixed metal MOF based on 1D rod secondary building units. UV-vis, HPLC, TGA, XRPD, solid state NMR and computational studies indicated that NUIG1 exhibits an exceptionally high Ibuprofen (Ibu) and nitric oxide adsorpt…
From Bowls to Capsules: Assembly of Hexanuclear Ni II Rings Tailored by Alkali Cations
An anionic hexanuclear NiII metallamacrocycle with endo and exo linking sites has been employed as a building block to generate a series of capsules and bowls of nanometric size. The supramolecular arrangement of the {Ni6 } rings was tailored by the size of the alkali cations, showing the transition from {Ni6 -M2 -Ni6 } capsules (M=LiI and NaI ) to {Ni6 -M} bowls (M=KI and CsI ). The alkyl co-cations are determinant to stabilize the assemblies by means of CH⋅⋅⋅π interactions on the exo side of the metallamacrocycles. The effect on the topology of the supramolecular assemblies of the cation size, cation charge, Et3 NH+ or Me4 N+ counter cations has been analyzed. Magnetic measurements reveal…
Synthesis and characterization of new coordination compounds by the use of 2-pyridinemethanol and di- or tricarboxylic acids
The development of synthetic approaches towards new coordination polymers has attracted significant interest due to their fascinating physical properties, as well as their use in a wide range of technological, environmental and biomedical applications. Herein, the initial combination of 2-pyridinemethanol (Hhmp) with 1,4-benzenedicarboxylic acid (H2bdc) or 1,3,5-benzenetricarboxylic acid (H3btc) has been proven a fruitful source of such new species providing access to five new coordination compounds, namely [M2(Hbtc)2(Hhmp)4]·DMF (M = CoII, 1·DMF;NiII, 2·DMF), [Ni(bdc)(Hhmp)2]n·4H2O (3·4H2O), [Zn2(bdc)(hmp)2]n·DMF (4·DMF) and [Fe3(bdc)3(Hhmp)2]n (5). 4·DMF and 5 are the first metal–organic …
Chiral Oxazolidine Complexes Derived from Phenolic Schiff Bases
Schiff bases derived from pyridyl- or salicyl-aldehydes and aminoalcohols can evolve to heterocyclic oxazolidines, which in the presence of cations allow the formation of uncommon coordination compounds. In this work, we report new NiII and mixed valence MnII/ MnIV complexes derived from pyridyl oxazolidines and the unprecedented characterization of enantiomerically pure oxazolidines derived from the condensation of o-vanillin with phenylglycinol in the presence of NiII cations. The different reactivity of the pyridinic or phenolic Schiff bases has been compared, and the new systems have been structurally, optically, and magnetically characterized.
Spin Frustration in Triangular Cu 3 II Complexes with 6‐Methyl‐2‐pyridyloxime as Ligand – Synthesis, Structural, and Magnetic Characterization
In the present work, new examples of μ3-OH/oximato Cu3 triangles have been obtained by treatment of different copper salts with 6-methyl-2-pyridylaldoxime [6-MepyC(H)NOH, 6-mepaoH]. Depending on the anion, the compounds [Cu3(OH)(6-mepao)3(O2CPh)2] (1), [Cu6(OH)2(6-mepao)6(NO3)3](NO3)·H2O (2·H2O) and [Cu6(OH)2(6-mepao)6(ClO4)3](ClO4) (3) formed and were characterized. Complex 1 is an isolated triangle, whereas 2 and 3 are hexanuclear compounds with two triangular subunits linked by anionic bridges. Susceptibility measurements show very strong antiferromagnetic interactions and the presence of antisymmetric exchange at low temperature. The magnetic properties of these frustrated triangles hav…
Correlating the axial Zero Field Splitting with the slow magnetic relaxation in GdIII SIMs
The field-induced out-of-phase magnetic response of a GdIII complex, selected by its good isolation in the network, has been analyzed and the behaviour of this quasi-isotropic cation has been related to its weak axial zero field splitting ∼0.1 cm-1.
Exploring the Role of Intramolecular Interactions in the Suppression of Quantum Tunneling of the Magnetization in a 3d-4f Single-Molecule Magnet.
Hydroxide-bridged FeIII4LnIII2 clusters having the general formula [Fe4Ln2(μ3-OH)2(mdea)6(SCN)2(NO3)2(H2O)2]·4H2O·2MeCN {Ln = Y (1), Dy (2), mdea = N-methyldiethanolamine} were synthesized and magnetically characterized. The thermal relaxation of the magnetization for 2 and the diluted FeIII4DyIIIYIII complex 3 (with and without applied field) has been analyzed. The diluted sample shows a dominant QTM at low temperatures that can be removed with a 0.15 T dc field. Both 2 and 3 show moderately high Ueff barriers and exhibit hysteresis loops until 5 K.
Cover Feature: From Bowls to Capsules: Assembly of Hexanuclear Ni II Rings Tailored by Alkali Cations (Chem. Eur. J. 49/2020)
Hexanuclear Manganese(III) Single-Molecule Magnets
CCDC 2073645: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Júlia Mayans, Wenming Tong, Pau Farràs, Albert Escuer, Patrick McArdle, Constantina Papatriantafyllopoulou|2021|CrystEngComm|23|5489|doi:10.1039/D1CE00659B
CCDC 1996425: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Constantinos C. Stoumpos, Mercé Font-Bardia, Albert Escuer|2020|Chem.-Eur.J.|26|11158|doi:10.1002/chem.202001900
CCDC 920638: Experimental Crystal Structure Determination
Related Article: Albert Escuer, Gina Vlahopoulou, Francesc Lloret, Franz A. Mautner|2014|Eur.J.Inorg.Chem.||83|doi:10.1002/ejic.201300910
CCDC 1538406: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1942681: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Mercé Font-Bardia, Albert Escuer|2019|Dalton Trans.|48|16158|doi:10.1039/C9DT03600H
CCDC 1996430: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Constantinos C. Stoumpos, Mercé Font-Bardia, Albert Escuer|2020|Chem.-Eur.J.|26|11158|doi:10.1002/chem.202001900
CCDC 1996426: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Constantinos C. Stoumpos, Mercé Font-Bardia, Albert Escuer|2020|Chem.-Eur.J.|26|11158|doi:10.1002/chem.202001900
CCDC 2008513: Experimental Crystal Structure Determination
Related Article: Meghan Winterlich, Constantinos G. Efthymiou, Wassillios Papawassiliou, Jose P. Carvalho, Andrew J. Pell, Julia Mayans, Albert Escuer, Michael P. Carty, Patrick McArdle, Emmanuel Tylianakis, Liam Morrison, George Froudakis, Constantina Papatriantafyllopoulou|2020|Mat.Advs.|1|2248|doi:10.1039/D0MA00450B
CCDC 2073643: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Júlia Mayans, Wenming Tong, Pau Farràs, Albert Escuer, Patrick McArdle, Constantina Papatriantafyllopoulou|2021|CrystEngComm|23|5489|doi:10.1039/D1CE00659B
CCDC 1538408: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 879928: Experimental Crystal Structure Determination
Related Article: Albert Escuer, Gina Vlahopoulou, Francesc Lloret, Franz A. Mautner|2014|Eur.J.Inorg.Chem.||83|doi:10.1002/ejic.201300910
CCDC 1996428: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Constantinos C. Stoumpos, Mercé Font-Bardia, Albert Escuer|2020|Chem.-Eur.J.|26|11158|doi:10.1002/chem.202001900
CCDC 2043111: Experimental Crystal Structure Determination
Related Article: Muhammad Nadeem Akhtar, Murad A. AlDamen, Colin D. McMillen, Albert Escuer, Júlia Mayans|2021|Inorg.Chem.|60|9302|doi:10.1021/acs.inorgchem.0c03682
CCDC 2073642: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Júlia Mayans, Wenming Tong, Pau Farràs, Albert Escuer, Patrick McArdle, Constantina Papatriantafyllopoulou|2021|CrystEngComm|23|5489|doi:10.1039/D1CE00659B
CCDC 1538411: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 2038607: Experimental Crystal Structure Determination
Related Article: Despina Dermitzaki, Catherine P. Raptopoulou, Vassilis Psycharis, Albert Escuer, Spyros P. Perlepes, Julia Mayans, Theocharis C. Stamatatos|2021|Dalton Trans.|50|240|doi:10.1039/D0DT03582C
CCDC 1993846: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Daniel Gómez, Mercè Font-Bardia, Albert Escuer|2020|Cryst.Growth Des.|20|4176|doi:10.1021/acs.cgd.0c00466
CCDC 1538407: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1993844: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Daniel Gómez, Mercè Font-Bardia, Albert Escuer|2020|Cryst.Growth Des.|20|4176|doi:10.1021/acs.cgd.0c00466
CCDC 1993843: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Daniel Gómez, Mercè Font-Bardia, Albert Escuer|2020|Cryst.Growth Des.|20|4176|doi:10.1021/acs.cgd.0c00466
CCDC 1996427: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Constantinos C. Stoumpos, Mercé Font-Bardia, Albert Escuer|2020|Chem.-Eur.J.|26|11158|doi:10.1002/chem.202001900
CCDC 2073646: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Júlia Mayans, Wenming Tong, Pau Farràs, Albert Escuer, Patrick McArdle, Constantina Papatriantafyllopoulou|2021|CrystEngComm|23|5489|doi:10.1039/D1CE00659B
CCDC 2043113: Experimental Crystal Structure Determination
Related Article: Muhammad Nadeem Akhtar, Murad A. AlDamen, Colin D. McMillen, Albert Escuer, Júlia Mayans|2021|Inorg.Chem.|60|9302|doi:10.1021/acs.inorgchem.0c03682
CCDC 1538409: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1538410: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1503292: Experimental Crystal Structure Determination
Related Article: Dimosthenis P. Giannopoulos, Luís Cunha-Silva, Rafael Ballesteros-Garrido, Rafael Ballesteros, Belén Abarca, Albert Escuer, Theocharis C. Stamatatos|2016|RSC Advances|6|105969|doi:10.1039/C6RA22953K
CCDC 1996429: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Constantinos C. Stoumpos, Mercé Font-Bardia, Albert Escuer|2020|Chem.-Eur.J.|26|11158|doi:10.1002/chem.202001900
CCDC 2073644: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Júlia Mayans, Wenming Tong, Pau Farràs, Albert Escuer, Patrick McArdle, Constantina Papatriantafyllopoulou|2021|CrystEngComm|23|5489|doi:10.1039/D1CE00659B
CCDC 2043112: Experimental Crystal Structure Determination
Related Article: Muhammad Nadeem Akhtar, Murad A. AlDamen, Colin D. McMillen, Albert Escuer, Júlia Mayans|2021|Inorg.Chem.|60|9302|doi:10.1021/acs.inorgchem.0c03682
CCDC 1503291: Experimental Crystal Structure Determination
Related Article: Dimosthenis P. Giannopoulos, Luís Cunha-Silva, Rafael Ballesteros-Garrido, Rafael Ballesteros, Belén Abarca, Albert Escuer, Theocharis C. Stamatatos|2016|RSC Advances|6|105969|doi:10.1039/C6RA22953K
CCDC 2038608: Experimental Crystal Structure Determination
Related Article: Despina Dermitzaki, Catherine P. Raptopoulou, Vassilis Psycharis, Albert Escuer, Spyros P. Perlepes, Julia Mayans, Theocharis C. Stamatatos|2021|Dalton Trans.|50|240|doi:10.1039/D0DT03582C
CCDC 1993845: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Daniel Gómez, Mercè Font-Bardia, Albert Escuer|2020|Cryst.Growth Des.|20|4176|doi:10.1021/acs.cgd.0c00466
CCDC 879927: Experimental Crystal Structure Determination
Related Article: Albert Escuer, Gina Vlahopoulou, Francesc Lloret, Franz A. Mautner|2014|Eur.J.Inorg.Chem.||83|doi:10.1002/ejic.201300910
CCDC 1993842: Experimental Crystal Structure Determination
Related Article: Júlia Mayans, Daniel Gómez, Mercè Font-Bardia, Albert Escuer|2020|Cryst.Growth Des.|20|4176|doi:10.1021/acs.cgd.0c00466