0000000000122243
AUTHOR
Catherine P. Raptopoulou
Nickel(II) Coordination Clusters Based on N-salicylidene-4-chloro-oaminophenol: Synthetic and Structural Studies
Corrigendum to “A diferric complex from metal-assisted methanolysis of di-2,6-(2-pyridylcarbonyl)-pyridine: Structural, magnetic and spectroscopic (Mössbauer, EPR) study” [Polyhedron 28 (2009) 15]
Corrigendum to ‘‘A diferric complex from metal-assisted methanolysis of di-2,6-(2-pyridylcarbonyl)-pyridine: Structural, magnetic and spectroscopic (Mossbauer, EPR) study” [Polyhedron 28 (2009) 15] Anastasia N. Georgopoulou , Rosa Adam, Yiannis Sanakis , Catherine P. Raptopoulou , Vassilis Psycharis , Rafael Ballesteros , Belen Abarca , Athanassios K. Boudalis a,* a Institute of Materials Science, NCSR ‘‘Demokritos”, 153 10 Aghia Paraskevi Attikis, Greece Departamento de Quimica Organica, Faculdad de Farmacia, Universidad de Valencia, Avda. Vicente Andres Estelles s/n, 46100 Burjassot (Valencia), Spain
Ferromagnetism in Cu II 4 and Co II 4 Complexes Derived from Metal‐Assisted Solvolysis of Di‐2,6‐(2‐pyridylcarbonyl)pyridine: Syntheses, Structures, and Magnetic Properties
Metal-assisted solvolysis of di-2,6-(2-pyridylcarbonyl)pyr-idine (pyCOpyCOpy, dpcp) by M(0 2 CMe) 2 ·xH 2 O (M II = Cu II , CO II ) led to complex [Cu 4 {pyC(O) 3 pyC(O)(OEt )py}(O 2 CMe )5-(EtOH) 2 ] (1), when the reaction was carried out in EtOH, and to complex [Co4{pyC(O)(OMe )pyC(O)(OMe )py} 2 (02CMe)2-(N 3 ) 2 ] (2), when the reaction was carried out in MeOH in the presence of azide anions. Complex 1 consists of four Cu II ions bridged by the hemiacetal-gem-diol form of the ligand, which is found in a μ 4 -η 2 :η 2 :η 2 :η 1 :η 1 :η 1 coordination mode. It exhibits ferromagnetic couplings among all nearest neighbors and antiferromagnetic next-nearest-neighbor interactions (J 12 = J 1 =…
Co(II) chemistry of 2,6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation.
High-nuclearity transition-metal complexes (clusters) are of special interest in chemistry and physics because, both in terms of size and physical properties, they bridge the gap between the microscopic and macroscopic world, and between quantum and classical systems. In terms of size, the smallest classical nanoparticles fabricated today are the same size as the largest metal clusters that are synthesized by bottom-up methods. In terms of physical properties, certain transition-metal clusters exhibit single-molecule magnetism at low temperatures, that is, they retain their magnetization in zero field in a manner analogous to that of classical macroscopic magnets, but at the same time they …
The first member of a second generation family of ligands derived from metal-ion assisted reactivity of di-2,6-(2-pyridylcarbonyl)pyridine: Synthesis and characterization of a MnII/III4 rhombus
Abstract Nucleophilic attack by the carbanion −CH2COCH3 at the carbonyl carbon atoms of 2,6-di-(2-pyridylcarbonyl)pyridine, pyCOpyCOpy, in the presence of Mnn+ ions under basic conditions has yielded the cationic cluster [Mn4(OH)2(L)2(H2O)2](ClO4)4 (1), where L2− is the (py)C(CH2COCH3)(O−)(py)C(CH2COCH3)(O−)(py) dianion. The cluster cation possesses a planar {MnII2MnIII2(μ3-OH)2(μ-OR)4}4+ rhombus core, resulting from two μ3-OH− ions and two η1:η2:η1:η1:η1:η2:η1:μ3 bridging L2− groups from the in situ formed ligand. Complex 1 is antiferromagnetically coupled with an unusual S = 2 ground state resulting from spin frustration effects within the triangular Mn3 subunits of the cluster.
Iron(III) Clusters from Polydentate Schiff Base Ligands: Involvement of Non Heisenberg Interaction in [FeIII 3(µ2-OR)3(µ2-O2CPh)3]3+ Clusters
Further synthetic investigation of the general lanthanoid(iii) [Ln(iii)]/copper(ii)/pyridine-2,6-dimethanol/carboxylate reaction system: {CuII5LnIII4} coordination clusters (Ln = Dy, Tb, Ho) and their yttrium(iii) analogue
In addition to previously studied {CuII3Gd6}, {CuII8Gd4}, {CuII15Ln7} and {CuII4Ln8} coordination clusters (Ln = trivalent lanthanide) containing pdm2− or Hpdm− ligands (H2pdm = pyridine-2,6-dimethanol) and ancillary carboxylate groups (RCO2−), the present work reports the synthesis and study of three new members of a fifth family of such complexes. Compounds [Cu5Ln4O2(OMe)4(NO3)4(O2CCH2But)2(pdm)4(MeOH)2] (Ln = Dy, 1; Ln = Tb, 2; Ln = Ho, 3) were prepared from the reaction of Ln(NO3)3·xH2O (x = 5, 6), CuX2·yH2O (X = ClO4, Cl, NO3; y = 6, 2 and 3, respectively), H2pdm, ButCH2CO2H and Et3N (2 : 2.5 : 2 : 1 : 9) in MeCN/MeOH. Rather surprisingly, the copper(II)/yttrium(III) analogue has a sli…
Isomorphous replacement of MII ions in MII–GdIII dimers (MII = CuII, MnII, NiII, CoII, ZnII): magnetic studies of the products
Complexes [M(II)Gd(III){pyCO(OEt)pyC(OH)(OEt)py}₃](ClO₄)₂·EtOH [M(II) = Cu(II) (1), Mn(II) (2), Ni(II) (3), Co(II) (4) and Zn(II) (5)] crystallize in the monoclinic Cc space group and contain one hexacoordinate M(II) ion and one enneacoordinate Gd(III) ion, bridged by three {pyCO(OEt)pyC(OH)(OEt)py}⁻ ligands. Magnetic susceptibility measurements indicate a ferromagnetic interaction for 1 and antiferromagnetic interactions for 2-4. Using the Ĥ = -JŜ(Gd(III))Ŝ(M(II)) spin Hamiltonian formalism, fits to the magnetic susceptibility data yielded J values of +0.32 cm⁻¹ for 1, -1.7 cm⁻¹ for 2, and -0.22 cm⁻¹ for 3. In complex 4, the orbital contributions of Co(II) precluded the determination of th…
Expanding the 3d-4f heterometallic chemistry of the (py)2CO and pyCOpyCOpy ligands: structural, magnetic and Mössbauer spectroscopic studies of two Fe(II)-Gd(III) complexes.
Complex [Fe(II)Gd(III){pyCO(OEt)pyCOH(OEt)py}(3)](ClO(4))(2) (1) crystallizes in the Cc space group and contains one hexacoordinate ferrous ion and one enneacoordinate Gd(III) ion. Complex [Fe(2)(II)Gd(III){pyCO(OEt)py}(4)(NO(3))(H(2)O)][Gd(NO(3))(5)](0.5)(ClO(4)) (2) crystallizes in the C2/c space group and contains two hexacoordinate ferrous ions and one octacoordinate Gd(III) ion. Both complexes have been prepared by the metal-assisted ethanolysis of ligands di-2,6-(2-pyridylcarbonyl)pyridine (pyCOpyCOpy, dpcp) and di-2-pyridyl ketone ((py)(2)CO, dpk), which exhibit similar structures. Mössbauer spectroscopic studies of 2 revealed the presence of two quadrupole-split doublets of equal in…
An "S"-shaped pentanuclear CuII cluster derived from the metal-assisted hydrolysis of pyCOpyCOpy: structural, magnetic and spectroscopic studies.
Reaction of [Cu2(O2CMe)4(H2O)2] with 2,6-di-(2-pyridylcarbonyl)-pyridine (pyCOpyCOpy or dpcp) in MeCN–H2O 10 : 1, led to the pentanuclear copper(II) complex [Cu5(O2CMe)6{pyC(O)(OH)pyC(O)(OH)py}2] (1) which crystallizes in the triclinic P space group. The copper(II) atoms are arranged in an “S”-shaped configuration, and are bridged by the doubly deprotonated bis(gem-diol) form of the ligand, pyC(O)(OH)pyC(O)(OH)py2−. Magnetic susceptibility data indicate the interplay of both ferro- and antiferromagnetic intramolecular interactions stabilizing an S = 3/2 ground state. Fitting of the data according to a next-nearest-neighbour model {Ĥ = −[J1(Ŝ1Ŝ2 + Ŝ1′Ŝ2′) + J2(Ŝ2Ŝ3 + Ŝ3′Ŝ2′) + J3(Ŝ1Ŝ3 + Ŝ3′Ŝ…
Slow Magnetization Relaxation in a 1-D Double-Chain Coordination Polymer Composed of {Dy<sup>III</sup> <sub>4</sub>} Repeating Units
The "unsuccessful" synthesis of the non-commercially available 'Dy(O2CPh)3' precursor from the stoichiomet- ric reaction of Dy(NO3)3·5H2O with 3 equivalents of NaO2CPh in MeCN/H2O has led instead to the "successful" isolation and structural characterization of the 1-D coordination polymer (Dy4(O2CPh)12(H2O)8)n·2n(PhCO2H)·n(MeCN) (1·2n(PhCO2H)·n(MeCN)) in excellent yields (~90%). The one-dimensional double-chain structure of 1 was resulted from the linkage of two parallel chains by syn,anti-� 1 :� 1 :μ PhCO2 - groups. The lattice structure of 1 is further extended to a 2-D network through hydrogen bonding and - stacking interactions. The observation of out-of-phase (� �� M) ac susceptibility…
Hexanuclear Manganese(III) Single-Molecule Magnets
CCDC 1551428: Experimental Crystal Structure Determination
Related Article: Eleni C. Mazarakioti, Sofia Tzani, Vassilis Psycharis, Michael Pissas, Yiannis Sanakis, Catherine P. Raptopoulou|2017|Curr.Inorg.Chem.|7|66|doi:10.2174/1877944107666170914113838
CCDC 1538406: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1551426: Experimental Crystal Structure Determination
Related Article: Eleni C. Mazarakioti, Sofia Tzani, Vassilis Psycharis, Michael Pissas, Yiannis Sanakis, Catherine P. Raptopoulou|2017|Curr.Inorg.Chem.|7|66|doi:10.2174/1877944107666170914113838
CCDC 1538408: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1551424: Experimental Crystal Structure Determination
Related Article: Eleni C. Mazarakioti, Sofia Tzani, Vassilis Psycharis, Michael Pissas, Yiannis Sanakis, Catherine P. Raptopoulou|2017|Curr.Inorg.Chem.|7|66|doi:10.2174/1877944107666170914113838
CCDC 1551425: Experimental Crystal Structure Determination
Related Article: Eleni C. Mazarakioti, Sofia Tzani, Vassilis Psycharis, Michael Pissas, Yiannis Sanakis, Catherine P. Raptopoulou|2017|Curr.Inorg.Chem.|7|66|doi:10.2174/1877944107666170914113838
CCDC 1538411: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 2038607: Experimental Crystal Structure Determination
Related Article: Despina Dermitzaki, Catherine P. Raptopoulou, Vassilis Psycharis, Albert Escuer, Spyros P. Perlepes, Julia Mayans, Theocharis C. Stamatatos|2021|Dalton Trans.|50|240|doi:10.1039/D0DT03582C
CCDC 1538407: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1551429: Experimental Crystal Structure Determination
Related Article: Eleni C. Mazarakioti, Sofia Tzani, Vassilis Psycharis, Michael Pissas, Yiannis Sanakis, Catherine P. Raptopoulou|2017|Curr.Inorg.Chem.|7|66|doi:10.2174/1877944107666170914113838
CCDC 1551427: Experimental Crystal Structure Determination
Related Article: Eleni C. Mazarakioti, Sofia Tzani, Vassilis Psycharis, Michael Pissas, Yiannis Sanakis, Catherine P. Raptopoulou|2017|Curr.Inorg.Chem.|7|66|doi:10.2174/1877944107666170914113838
CCDC 1538409: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 1538410: Experimental Crystal Structure Determination
Related Article: Ioannis Mylonas-Margaritis, Julia Mayans, Panagiota S. Perlepe, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantina I. Alexopoulou, Albert Escuer, Spyros P. Perlepes|2017|Curr.Inorg.Chem.|7|48|doi:10.2174/1877944107666170705105817
CCDC 2038608: Experimental Crystal Structure Determination
Related Article: Despina Dermitzaki, Catherine P. Raptopoulou, Vassilis Psycharis, Albert Escuer, Spyros P. Perlepes, Julia Mayans, Theocharis C. Stamatatos|2021|Dalton Trans.|50|240|doi:10.1039/D0DT03582C