0000000000124089

AUTHOR

B. Latacz

showing 7 related works from this author

Accumulation of positrons from a LINAC based source

2020

International audience; The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H̅. It will use H̅+ ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one H̅+. We present the first results on the positron accumulation, reaching 3.8±0.4×108 e+ collected in 560 s.

010302 applied physicsPhysicsMeasure (physics)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyGravitational acceleration01 natural sciencesLinear particle acceleratorPositroniumNuclear physicsPositronPositron plasma; Positron accumulation; Antimatter; Penning-Malmberg trap; Greaves-Surko trap; GBAR[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]AntiprotonAntimatter0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physics::Accelerator PhysicsPhysics::Atomic Physics0210 nano-technologyAntihydrogenComputingMilieux_MISCELLANEOUSActa Physica Polonica A
researchProduct

LC circuit mediated sympathetic cooling of a proton via image currents

2021

Abstract Efficient cooling of trapped charged particles is essential in many fundamental physics experiments, for high-precision metrology, and for quantum technology. Until now, ion-ion coupling for sympathetic cooling or quantum state control has been limited to ion species with accessible optical transitions or has required close-range Coulomb interactions. To overcome this limitation and further develop scalable quantum control techniques, there has been a sustained desire to extend laser-cooling techniques to particles in macroscopically separated traps, opening quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions, and antimatter p…

Sympathetic coolingMaterials scienceProtonbusiness.industryOptoelectronicsPhysics::Atomic PhysicsLC circuitbusiness
researchProduct

A pulsed high-voltage decelerator system to deliver low-energy antiprotons

2021

International audience; The GBAR (Gravitational Behavior of Antihydrogen at Rest) experiment at CERN requires efficient deceleration of 100 keV antiprotons provided by the new ELENA synchrotron ring to synthesize antihydrogen. This is accomplished using electrostatic deceleration optics and a drift tube that is designed to switch from -99 kV to ground when the antiproton bunch is inside – essentially a charged particle “elevator” – producing a 1 keV pulse. We describe the simulation, design, construction and successful testing of the decelerator device at -92 kV on-line with antiprotons from ELENA.

Nuclear and High Energy PhysicsDrift tubeGeneral RelativityIon-optic simulationsCERN Labdrift tubeAstrophysics::High Energy Astrophysical Phenomena[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Charged-particle opticsfabrication7. Clean energy01 natural sciencesanti-p: decelerationlaw.inventionNuclear physicslaw0103 physical sciencessynchrotronPhysics::Atomic Physics010306 general physicsAntihydrogennumerical calculationsInstrumentationaccelerator: designPhysicsantihydrogenLarge Hadron Collider010308 nuclear & particles physicsHigh voltageCharged particleSynchrotron[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Pulse (physics)beam opticsAntiprotonPhysics::Accelerator Physics
researchProduct

Positron production using a 9 MeV electron linac for the GBAR experiment

2020

For the GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN's Antiproton Decelerator (AD) facility we have constructed a source of slow positrons, which uses a low-energy electron linear accelerator (linac). The driver linac produces electrons of 9 MeV kinetic energy that create positrons from bremsstrahlung-induced pair production. Staying below 10 MeV ensures no persistent radioactive activation in the target zone and that the radiation level outside the biological shield is safe for public access. An annealed tungsten-mesh assembly placed directly behind the target acts as a positron moderator. The system produces $5\times10^7$ slow positrons per second, a performan…

safetyAntimatterNuclear and High Energy PhysicsCERN LabPhysics - Instrumentation and DetectorstungstenPositronAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElectron01 natural sciences7. Clean energyLinear particle acceleratorpositron: particle source010305 fluids & plasmaselectron: pair productionNuclear physicselectron: linear acceleratorPositronPositron; Linear accelerator; Antimatter; Antihydrogen; Gravitation0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental TechniquesNuclear Experiment010306 general physicsAntihydrogenphysics.ins-detInstrumentationenergy: lowantihydrogenPhysicsLarge Hadron Collidergravitation 2Instrumentation and Detectors (physics.ins-det)linear acceleratorAntiproton DeceleratorPair productionradioactivityAntimattergravitation: accelerationPhysics::Accelerator PhysicsHigh Energy Physics::Experimentperformancepositron: yieldGravitationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penn…

2021

We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Dark matterOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomyphysics.atom-ph01 natural sciences7. Clean energyPhysics - Atomic PhysicsNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsParticle Physics - PhenomenologySuperconductivityPhysicshep-phPenning trapCoupling (probability)Magnetic fieldHigh Energy Physics - PhenomenologyAntiprotonastro-ph.COPräzisionsexperimente - Abteilung BlaumCERN Axion Solar TelescopeAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Development of a PbWO 4 detector for single-shot positron annihilation lifetime spectroscopy at the GBAR experiment

2020

International audience; We have developed a PbWO 4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross section for the (anti) hydrogen formation by (anti) proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment.

PhysicsPhysics::Instrumentation and Detectors[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]DetectorMeasure (physics)General Physics and Astronomy7. Clean energyIonNuclear physicsCross section (physics)[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]PACS: 78.70.Bj 41.75.Fr 36.10.DrYield (chemistry)Reflection (physics)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]AntihydrogenSpectroscopyComputingMilieux_MISCELLANEOUS
researchProduct

Sympathetic cooling of a trapped proton mediated by an LC circuit

2021

Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enable…

Sympathetic coolingProtonAtomic Physics (physics.atom-ph)FOS: Physical sciencesLC circuit7. Clean energy01 natural sciencesArticle010305 fluids & plasmasIonPhysics - Atomic PhysicsPhysics in General0103 physical sciencesAtomic and molecular physicsPhysics::Atomic Physics010306 general physicsPhysicsQuantum PhysicsMultidisciplinaryCharged particleQuantum technologyAntiprotonAntimatterExotic atoms and moleculesddc:500Atomic physicsPräzisionsexperimente - Abteilung BlaumQuantum Physics (quant-ph)
researchProduct