0000000000125232
AUTHOR
B. H. Wolf
The neutron-rich Mg isotopes: first results from MINIBALL at REX-ISOLDE
After the successful commissioning of the Radioactive beam EXperiment (REX) at ISOLDE (CERN) in 2002, first physics experiments were performed in 2003 which focussed on the neutron-rich Mg isotopes in the vicinity of the “island of inversion”. After introducing the REX facility and the modern γ spectrometer MINIBALL first preliminary results will be presented showing the high potential and physics opportunities offered by this new radioactive beam facility.
“Safe” Coulomb Excitation ofMg30
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)R 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the …
Investigation of the Li9+H2→Li8+t reaction at REX-ISOLDE
The one-neutron transfer reaction Li-9 + H-2 -> Li-8 + t has been investigated in an inverse kinematics experiment by bombarding a deuterated polypropylene target with a 2.36 MeV/u Li-9 beam from the post-accelerator REX-ISOLDE at CERN. Excitation energies in Li-8 as well as angular distributions of the tritons were obtained and spectroscopic factors deduced. (c) 2006 Elsevier B.V. All rights reserved.
The Miniball spectrometer
The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the γ-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are hi…
Accelerated radioactive beams from REX-ISOLDE
In 2001 the linear accelerator of the Radioactive beam EXperiment (REX-ISOLDE) delivered for the first time accelerated radioactive ion beams, at a beam energy of 2 MeV/u. REX-ISOLDE uses the method of charge-state breeding, in order to enhance the charge state of the ions before injection into the LINAC. Radioactive singly-charged ions from the on-line mass separator ISOLDE are first accumulated in a Penning trap, then charge bred to an A/q < 4.5 in an electron beam ion source (EBIS) and finally accelerated in a LINAC from 5 keV/u to energies between 0.8 and 2.2 MeV/u. Dedicated measurements with REXTRAP, the transfer line and the EBIS have been carried out in conjunction with the first co…
First radioactive ions charge bred in REXEBIS at the REX-ISOLDE accelerator
REXEBIS is the charge breeder of the REX-ISOLDE post accelerator. The radioactive 1$^{+}$ ions produced at ISOLDE are accumulated, phase-space cooled and bunched in the REXTRAP, and thereafter injected into the EBIS with an energy up to 60 keV. The REXEBIS produced the first charge bred ions in August 2001 and has been running nearly non-stop during September to December 2001. It has delivered stable $^{39}$K$^{10+}$ and $^{23}$Na$^{6+}$ beams generated in the ion source in front of REXTRAP with a Na$^{7+}$ current exceeding 70 pA (6x10$^{7}$ p/s). Stable $^{27}$Al$^{7+}$ and $^{23}$Na$^{6+}$ from ISOLDE and also the first radioactive $^{26}$Na$^{7+}$ and $^{24}$Na$^{7+}$ beams (just 5x10$^…
Accelerating Radioactive Ion Beams With REX-ISOLDE
The post accelerator REX‐ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX‐ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi‐continuous beam from the ISOLDE target‐ion‐source, and then an electron beam ion source (EBIS) charge‐breeds them to a mass‐to‐charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ, an IH structure and three 7‐gap‐resonators. The later ones allow a variation of the final en…
Low energy reactions with radioactive ions at REX-ISOLDE-the 9Li + 2H case
19 pages, 12 figures, 2 tables.-- PACS nrs.: 25.60.-t; 25.45.-z; 27.20.+n.-- et al. ISOLDE Collaborattion and REX-ISOLDE Collaboration.