0000000000125314

AUTHOR

Martin Frank

0000-0002-1006-6746

Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum

Malaria causes millions of death cases per year. Since Plasmodium falciparum rapidly develops drug resistance, it is of high importance to investigate potential drug targets which may lead to novel rational therapy approaches. Here we report on the interaction of translationally controlled tumor protein of P. falciparum (PfTCTP) with the anti-malarial drug artemisinin. Furthermore, we investigated the crystal structure of PfTCTP. Using mass spectrometry, bioinformatic approaches and surface plasmon resonance spectroscopy, we identified novel binding sites of artemisinin which are in direct neighborhood to amino acids 19-46, 108-134 and 140-163. The regions covered by these residues are know…

research product

Radiogenic isotopes: new tools help reconstruct paleocean circulation and erosion input

Ocean and atmosphere circulation and continental weathering regimes have undergone great changes over thousands of years as well as tens of millions of years. During the glacial stages of the Pleistocene, ocean circulation was generally more sluggish and deep water circulation in the Atlantic had a shallower flow. At the same time, weathering on the continents was enhanced by glacial erosion, particularly in high northern latitudes, which increased the input of erosional detritus into the ocean. In addition, atmospheric pressure gradients were larger, leading to higher wind speeds and increased supply of aeolian dust to the ocean. Prior to the onset of Northern Hemisphere glaciation and pro…

research product