0000000000128947

AUTHOR

Carlo Dominici

showing 8 related works from this author

Galectin-3 is a marker of favorable prognosis and a biologically relevant molecule in neuroblastic tumors

2014

Childhood neuroblastic tumors are characterized by heterogeneous clinical courses, ranging from benign ganglioneuroma (GN) to highly lethal neuroblastoma (NB). Although a refined prognostic evaluation and risk stratification of each tumor patient is becoming increasingly essential to personalize treatment options, currently only few biomolecular markers (essentially MYCN amplification, chromosome 11q status and DNA ploidy) are validated for this purpose in neuroblastic tumors. Here we report that Galectin-3 (Gal-3), a β-galactoside-binding lectin involved in multiple biological functions that has already acquired diagnostic relevance in specific clinical settings, is variably expressed in m…

0301 basic medicineMaleCancer ResearchPathologyTime FactorsCellular differentiationGalectin 3ApoptosisPredictive Value of TestKaplan-Meier EstimateNeuroblastoma0302 clinical medicineRisk FactorsChildGanglioneuroblastomaGanglioneuroblastomaCell DifferentiationBlood ProteinsNeuroblastic TumorPhenotypeImmunohistochemistry3. Good healthGalectin-3030220 oncology & carcinogenesisChild PreschoolImmunohistochemistryOriginal ArticleFemaleHumanmedicine.medical_specialtyAdolescentTime FactorSchwannian stromaGalectinsImmunologyBiologyTransfectionNeural cell differentiationschwannian stroma; neuroblastoma prognostic factor; neural cell differentiation; neuroblastoma03 medical and health sciencesCellular and Molecular NeurosciencePredictive Value of TestsNeuroblastomaCell Line TumormedicineBiomarkers TumorCell AdhesionHumansGanglioneuromaNeuroblastoma prognostic factorCell ProliferationNeoplasm StagingRisk FactorInfant NewbornApoptosiInfantGanglioneuromaCell Biologymedicine.disease030104 developmental biologyCancer research
researchProduct

Galectin-3 Impairment of MYCN-Dependent Apoptosis-Sensitive Phenotype Is Antagonized by Nutlin-3 in Neuroblastoma Cells

2012

MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage an…

Galectin 3Cancer TreatmentGene Dosagelcsh:MedicineApoptosisProtein-Serine-Threonine KinaseBiochemistryPiperazineschemistry.chemical_compoundNeuroblastoma0302 clinical medicineMolecular Cell BiologyBasic Cancer ResearchSignaling in Cellular Processeslcsh:ScienceEnergy-Producing OrganellesApoptotic SignalingNuclear ProteinOncogene Proteins0303 health sciencesN-Myc Proto-Oncogene ProteinMultidisciplinaryCell DeathImidazolesOncogene ProteinNuclear ProteinsTransfectionNutlin3. Good healthGene Expression Regulation NeoplasticProtein TransportCell killingPhenotypeOncologyGalectin-3030220 oncology & carcinogenesisGene Knockdown TechniquesMedicineResearch ArticleSignal TransductionHumanBiologyBioenergeticsProtein Serine-Threonine KinasesN-Myc Proto-Oncogene ProteinModels Biological03 medical and health sciencesNeuroblastomaCell Line TumormedicineHumansBiologyImidazolePiperazineneoplasms030304 developmental biologylcsh:RGene AmplificationChemotherapy and Drug Treatmentmedicine.diseasechemistryCell cultureApoptosisPediatric OncologyCytoprotectionGene Knockdown TechniqueCancer researchlcsh:QTumor Suppressor Protein p53Carrier ProteinsCarrier ProteinDNA Damage
researchProduct

MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response.

2010

Abstract MYCN amplification occurs in approximately 20% of human neuroblastomas and is associated with early tumor progression and poor outcome, despite intensive multimodal treatment. However, MYCN overexpression also sensitizes neuroblastoma cells to apoptosis. Thus, uncovering the molecular mechanisms linking MYCN to apoptosis might contribute to designing more efficient therapies for MYCN-amplified tumors. Here we show that MYCN-dependent sensitization to apoptosis requires activation of p53 and its phosphorylation at serine 46. The p53S46 kinase HIPK2 accumulates on MYCN expression, and its depletion by RNA interference impairs p53S46 phosphorylation and apoptosis. Remarkably, MYCN ind…

Cancer ResearchApoptosisCell Cycle ProteinsAtaxia Telangiectasia Mutated ProteinsProtein-Serine-Threonine KinaseAtaxia Telangiectasia Mutated ProteinNeuroblastomaCell Cycle ProteinSerinePhosphorylationNuclear ProteinOncogene Proteinseducation.field_of_studyN-Myc Proto-Oncogene ProteinAntibiotics AntineoplasticKinaseOncogene ProteinNuclear ProteinsDNA-Binding ProteinsOncologyPhosphorylationRNA InterferenceHumanDNA damageDNA-Binding ProteinPopulationBlotting WesternBiologyProtein Serine-Threonine KinasesN-Myc Proto-Oncogene ProteinBleomycinNeuroblastomaCell Line TumormedicineHumanseducationneoplasmsMolecular BiologyTumor Suppressor ProteinTumor Suppressor ProteinsApoptosimedicine.diseaseTumor progressionApoptosisMutationCancer researchTumor Suppressor Protein p53Carrier ProteinCarrier ProteinsDNA DamageMolecular cancer research : MCR
researchProduct

IMPRESA E BIOTECH

2006

researchProduct

L'evoluzione del mercato mondiale del vino

2005

researchProduct

Presentazione della ricerca

2007

researchProduct

La crisi dell'industria vinicola siciliana

2005

researchProduct

L'Economia della Sicilia fra Europa e Federalismo

2004

researchProduct