0000000000131635
AUTHOR
M Voss
Synthesis of cubic and hexagonal NaYF4:Er3+
Up-conversion luminescence process, which is related to absorption of several light photons (usually infrared) followed by emission of light in the visible or even ultraviolet spectral regions, has attracted interest of scientists due to its potential practical use in various applications including biolabels, temperature sensors, light sources etc. Although observable in d- and f-ions doped materials, the highest efficiency of up-conversion luminescence is usually attained in lanthanides doped hosts. Among huge variety of materials suitable as up-conversion hosts the most prominent is considered to be NaYF4, both due to its low phonon energy and multisite nature of the crystalline lattice. …
Novel synthesis of up-conversion phosphor based on rare-earth doped NaLaF4
In this work Er3+ doped NaLaF4 material has been synthesized Along with the description of the synthesis route, luminescence spectra and decay kinetics of both traditional and up-conversion luminescence of Er3+ will be presented for different Er3+ doping levels. It will be shown that the main mechanisms involved in the creation of the up-conversion luminescence in NaLaF4:Er3+ under excitation at about 975 nm are excited state absorption and energy transfer. Relative impact of either of the mechanisms in NaLaF4:Er3+ depends on both the concentration of Er3+ and on the excitation wavelength: the increase of either the concentration or the excitation wavelength leads to the prevalence of energ…
Multicolor Up-Conversion Luminescence in Rare-Earth Doped NaLaF4
In this work we tried to achieve multicolor up-conversion luminescence in low phonon energy material NaLaF4 doped with different Er3+ Tm3+ and Yb3+ concentrations. Up-conversion luminescence was measured and main luminescence bands from Er3+ and Tm3+ in red, green and blue spectral regions were observed. The relative intensities of the luminescence bands could be changed by changing the doping levels of rare-earth ions. Changes in the up-conversion luminescence color could be achieved by applying different infrared pump power density. The color coordinates of the multicolor up-conversion luminescence depending on doping level as well as on the pump power density were presented in CIE (x, y)…