0000000000131730

AUTHOR

Markus Scharfenberg

showing 5 related works from this author

Rigid Hyperbranched Polycarbonate Polyols from CO2 and Cyclohexene-Based Epoxides

2017

Hyperbranched, multifunctional polycarbonate polyols based on CO2, cyclohexene oxide (CHO), and the “inimer” (initiator–monomer) (4-hydroxymethyl)cyclohexene oxide (HCHO) were prepared in one-pot syntheses. The related linear poly(hydroxymethyl cyclohexene carbonate) structures based on protected HCHO and postpolymerization deprotection were also synthesized as model compounds. The content of hydroxyl functionalities was adjustable for both linear and hyperbranched terpolymer systems. All CO2/epoxide polymerizations were catalyzed by the (R,R)-(salcy)-Co(III)Cl complex. The polycarbonates obtained were comprehensively investigated using various 1D and 2D NMR techniques, SEC, FT-IR, UV–vis s…

Polymers and PlasticsIntrinsic viscosityOrganic ChemistryDispersityCyclohexeneEpoxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryvisual_artPolymer chemistryMaterials Chemistryvisual_art.visual_art_mediumCopolymerOrganic chemistryHydroxymethylPolycarbonate0210 nano-technologyCyclohexene oxideMacromolecules
researchProduct

Aliphatic polycarbonates based on carbon dioxide, furfuryl glycidyl ether, and glycidyl methyl ether: reversible functionalization and cross-linking.

2014

Well-defined poly((furfuryl glycidyl ether)-co-(glycidyl methyl ether) carbonate) (P((FGE-co-GME)C)) copolymers with varying furfuryl glycidyl ether (FGE) content in the range of 26% to 100% are prepared directly from CO2 and the respective epoxides in a solvent-free synthesis. All materials are characterized by size-exclusion chromatography (SEC), (1)H NMR spectroscopy, and differential scanning calorimetry (DSC). The furfuryl-functional samples exhibit monomodal molecular weight distributions with Mw/Mn in the range of 1.16 to 1.43 and molecular weights (Mn) between 2300 and 4300 g mol(-1). Thermal properties reflect the amorphous structure of the polymers. Both post-functionalization and…

Methyl EthersMaterials scienceMagnetic Resonance SpectroscopyPolymers and PlasticsPolymersEtherMaleimideschemistry.chemical_compoundDifferential scanning calorimetryPolymer chemistryMaterials ChemistryCopolymerOrganic chemistryFuransMaleimidechemistry.chemical_classificationPolycarboxylate CementCalorimetry Differential ScanningCycloaddition ReactionMolecular StructureOrganic ChemistryTemperaturePolymerCarbon DioxideAmorphous solidchemistryModels ChemicalProton NMRChromatography GelSurface modificationEpoxy CompoundsMacromolecular rapid communications
researchProduct

Multiarm Polycarbonate Star Polymers with a Hyperbranched Polyether Core from CO2 and Common Epoxides

2017

Multiarm star copolymers, consisting of hyperbranched poly(ethylene oxide) (hbPEO) or poly(butylene oxide) (hbPBO) polyether copolymers with glycerol branching points as a core, and linear aliphatic polycarbonate arms generated from carbon dioxide (CO2) and epoxide monomers, were synthesized via a “core-first” approach in two steps. First, hyperbranched polyether polyols were prepared by anionic copolymerization of ethylene oxide or 1,2-butylene oxide with 8–35% glycidol with molecular weights between 800 and 389,000 g·mol–1. Second, multiple arms were grown via immortal copolymerization of CO2 with propylene oxide or 1,2-butylene oxide using the polyether polyols as macroinitiators and (R,…

Polymers and PlasticsEthylene oxideOrganic ChemistryGlycidolOxideEpoxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundMonomerchemistryvisual_artPolymer chemistryMaterials ChemistryCopolymervisual_art.visual_art_mediumOrganic chemistryPropylene oxidePolycarbonate0210 nano-technologyMacromolecules
researchProduct

Functional Polycarbonates from Carbon Dioxide and Tailored Epoxide Monomers: Degradable Materials and Their Application Potential

2018

Thesaurus (information retrieval)Materials scienceEpoxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialschemistry.chemical_compoundMonomerchemistryCarbon dioxideElectrochemistryOrganic chemistryFunctional polymers0210 nano-technologyAdvanced Functional Materials
researchProduct

Acid-Labile Surfactants Based on Poly(ethylene glycol), Carbon Dioxide and Propylene Oxide: Miniemulsion Polymerization and Degradation Studies

2017

Partially degradable, nonionic AB and ABA type di- and triblock copolymers based on poly(propylene carbonate) and poly(ethylene glycol) blocks were synthesized via immortal copolymerization of carbon dioxide and propylene oxide, using mPEG or PEG as a macroinitiator, and (R,R)-(salcy)-CoOBzF5 as a catalyst in a solvent-free one-pot procedure. The amphiphilic surfactants were prepared with molecular weights (Mn) between 2800 and 10,000 g·mol−1 with narrow molecular weight distributions (1.03–1.09). The copolymers were characterized using 1H-, 13C- and DOSY-NMR spectroscopy and size exclusion chromatography (SEC). Surface-active properties were determined by surface tension measurements (crit…

polycarbonate; CO2; surfactant; miniemulsion polymerization; degradation; nanoparticleMaterials sciencePolymers and Plasticssurfactant02 engineering and technology010402 general chemistry01 natural sciencesArticleStyrenelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryPolymer chemistryCopolymerPropylene oxidedegradationnanoparticleGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMiniemulsionpolycarbonateChemical engineeringPolymerizationchemistryminiemulsion polymerizationCritical micelle concentrationPropylene carbonateCO20210 nano-technologyEthylene glycolPolymers
researchProduct