0000000000132181
AUTHOR
Alexander Its
showing 2 related works from this author
On Determinants of Integrable Operators with Shifts
2013
Integrable integral operator can be studied by means of a matrix Riemann--Hilbert problem. However, in the case of so-called integrable operators with shifts, the associated Riemann--Hilbert problem becomes operator valued and this complicates strongly the analysis. In this note, we show how to circumvent, in a very simple way, the use of such a setting while still being able to characterize the large-$x$ asymptotic behavior of the determinant associated with the operator.
Large-x Analysis of an Operator-Valued Riemann–Hilbert Problem
2015
International audience; The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.