0000000000132181

AUTHOR

Alexander Its

showing 2 related works from this author

On Determinants of Integrable Operators with Shifts

2013

Integrable integral operator can be studied by means of a matrix Riemann--Hilbert problem. However, in the case of so-called integrable operators with shifts, the associated Riemann--Hilbert problem becomes operator valued and this complicates strongly the analysis. In this note, we show how to circumvent, in a very simple way, the use of such a setting while still being able to characterize the large-$x$ asymptotic behavior of the determinant associated with the operator.

Semi-elliptic operatorPure mathematicsOperator (computer programming)Multiplication operatorIntegrable systemGeneral MathematicsMathematical analysisFinite-rank operatorOperator theoryCompact operatorMathematicsQuasinormal operatorInternational Mathematics Research Notices
researchProduct

Large-x Analysis of an Operator-Valued Riemann–Hilbert Problem

2015

International audience; The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.

Pure mathematicsIntegrable systemNonlinear schrodinger-equationMathematics::Complex VariablesGeneral Mathematics010102 general mathematicsMathematicsofComputing_NUMERICALANALYSIS[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinantImpenetrable bose-gas[ MATH.MATH-FA ] Mathematics [math]/Functional Analysis [math.FA][MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencessymbols.namesakeRiemann hypothesisOperator (computer programming)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesHilbert's problemssymbolsMethod of steepest descentRiemann–Hilbert problem010307 mathematical physics0101 mathematicsMathematics
researchProduct