0000000000133404

AUTHOR

Philip M Walker

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

research product

β−-delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes

The low-lying structure of W-188,W-190,W-192 has been studied following beta decays of the neutron-rich mother nuclei Ta-188,Ta-190,Ta-192 produced following the projectile fragmentation of a 1-GeV-per-nucleon Pb-208 primary beam on a natural beryllium target at the GSI Fragment Separator. The beta-decay half-lives of Ta-188, Ta-190, and Ta-192 have been measured, with gamma-ray decays of low-lying states in their respective W daughter nuclei, using heavy-ion beta-gamma correlations and a position-sensitive silicon detector setup. The data provide information on the low-lying excited states in W-188, W-190, and W-192, which highlight a change in nuclear shape at W-190 compared with that of …

research product

A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE

A newdecay-spectroscopystation(DSS)has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 mg=cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108 deg. away, allowing longer-lived species to be studied. Up to three high purity germanium detector…

research product

CRIS: A new method in isomeric beam production

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

research product

Investigation of the Δn = 0 selection rule in Gamow-Teller transitions: The β-decay of 207Hg

5 pags., 3 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Nuclear structure “southeast” ofPb208: Isomeric states inHg208andTl209

The nuclear structure of neutron-rich N>126 nuclei has been investigated following their production via relativistic projectile fragmentation of a E/A=1 GeV U-238 beam. Metastable states in the N=128 isotones Hg-208 and Tl-209 have been identified. Delayed gamma-ray transitions are interpreted as arising from the decay of I-pi=(8(+)) and (17/2(+)) isomers, respectively. The data allow for the so far most comprehensive verification of the shell-model approach in the region determined by magic numbers Z 126.

research product

Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151Lu

The quenching of the experimental spectroscopic factor for proton emission from the short-lived $d_{3/2}$ isomeric state in $^{151m}$Lu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyv\"{a}skyl\"{a}. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15.4(8) $\mu$s, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probabilit…

research product

'beta'-decay studies of neutron-rich 'TL', 'PB', and 'BI' isotopes

The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft fur Schwerionenforschung laboratory to investigate the β decay of neutron-rich nuclei just beyond 208Pb. This paper reports on β-delayed γ decays of 211-213Tl, 215Pb, and 215-219Bi de-exciting states in the daughters 211-213Pb, 215Bi, and 215-219Po. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden β transitions in this mass region is discussed. © 2014 American Physical Society.

research product

A facility for production and laser cooling of cesium isotopes and isomers

We report on the design, installation, and test of an experimental facility for the production of ultra-cold atomic isotopes and isomers of cesium. The setup covers a broad span of mass numbers and nuclear isomers, allowing one to directly compare chains of isotopes and isotope/isomer pairs. Cesium nuclei are produced by fission or fusion-evaporation reactions using primary proton beams from a 130 MeV cyclotron impinging upon a suitable target. The species of interest is ejected from the target in ionic form, electrostatically accelerated, mass separated, and routed to a science chamber. Here, ions are neutralized by implantation in a thin foil, and extracted by thermal diffusion. A neutral…

research product

FIRST RESULTS WITH THE RISING ACTIVE STOPPER

This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208 Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum ( Ta ) to Tungsten ( W ) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable he…

research product

Half-Life Systematics across theN=126Shell Closure: Role of First-Forbidden Transitions in theβDecay of Heavy Neutron-Rich Nuclei

This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic Pb208. The lifetimes of the 126-neutron shell isotone Pt204 and the neighboring Ir200-202, Pt203, Au204 are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden β strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first…

research product

Isomeric decay spectroscopy of theBi217isotope

The structure of the neutron-rich bismuth isotope 217Bi has been studied for the first time. The fragmentation of a primary 238U beam at the FRS-RISING setup at GSI was exploited to perform γ-decay spectroscopy, since μs isomeric states were expected in this nucleus. Gamma rays following the decay of a t1/2=3 μs isomer were observed, allowing one to establish the low-lying structure of 217Bi. The level energies and the reduced electric quadrupole transition probability B(E2) from the isomeric state are compared to large-scale shell-model calculations.

research product

New μs Isomers in the Neutron-rich 210Hg Nucleus

Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in Hg-210: the 8(+) isomer expected from the seniority scheme in the vg(9/2) shell and a second one at low spin and low excitation energy. The decay strength of the 8(+) isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3(-) state, although this is in contrast with theoretical expectations. (C) 2013 Elsevier B.V. All rights reserved.

research product

Search for very long-lived isomers in the hafnium-tungsten region

Targets of ${}^{48}\mathrm{Ca}$ have been bombarded with ${}^{134,136}\mathrm{Xe}$ beams as part of a search for long-lived, high-K states in well-deformed nuclei with $A\ensuremath{\approx}180.$ Several known isomers were observed by off-line \ensuremath{\gamma}-ray detection, and limits have been established for high-K isomer production in various isotopes of hafnium $(A=175--178),$ tantalum $(A=177--181),$ and tungsten $(A=177--181).$

research product

Application of ultra-fast timing techniques to the study of exotic and weakly produced nuclei

Ultra-fast time-delayed techniques have been recently applied in a number of studies where exotic nuclei were identified using advanced selection techniques. These include large Compton-suppressed Ge arrays, in-flight separators or recoil separators. Some of the new results are discussed in this presentation. Besides the results for $^{32}$Mg and $^{96}$Pd, they include the first determination of the half-life of the $8^+$ state in $^{80}$Ge, $T_1/2$ = 2.95(6) ns, and significantly more precise results for $^{51}$Mn (3680 keV level) and $^{48}$V (421 keV level), $T_1/2$ = 1760(40) ps and $T_1/2$ $\leq$ 135 ps, respectively. Development of new scintillators will steadily improve precision an…

research product

AGATA-Advanced GAmma Tracking Array

WOS: 000300864200005

research product