0000000000133704

AUTHOR

Franz W. Hulla

Membrane-Bound F1 ATPase from Micrococcus Sp. ATCC 398E. Purification and Characterization by Affinity Chromatography

A chemically reactive ATP analogue, 6-[(3-carboxy-4-nitrophenyl)thio]-9-β-D-ribofuranosylpurine 5′-triphosphate (Nbs6ITP) has been synthesized. It has the ability to form stable thioether bonds between the 6-position of the purine ring and aliphatic mercapto groups. The nucleotide moiety of the reagent has been covalently bound to agarose, via iminobispropylamine and N-acetyl-homocysteine as spacer with the purpose of producing an affinity chromatography material. The affinity matrix binds solubilized F1 ATPase from a crude extract of Micrococcus sp. membranes. Afterwards the enzyme can be selectively eluted from the column at a defined ATP concentration. This method is superior to the conv…

research product

F1-ATPase from Micrococcus sp. ATCC 398. Purification by Ion-Exchange Chromatography and Further Characterization. (Auto)proteolysis and Dissociative Effects

The preparation of highly purified F1-ATPase from Micrococcus sp. ATCC 398 by application of DEAE-Sepharose CL-6B chromatography as final step is described. This enzyme consists of five subunits of different molecular weight: alpha (65000), beta (55000),gamma (35000), delta (20000), and epsilon (17000). Disc electrophoresis on 5% polyacrylamide gels removes the epsilon-polypeptide yielding an active ATPase complex with four different subunits: alpha, beta, gamma, delta. Additionally, by variation of the ionic strength delta can (partly) removed allowing the isolation by disc electrophoresis of an active ATPase complex which consists only of three different subunits alpha, beta, and gamma. I…

research product