0000000000133884
AUTHOR
Roland De Putter
Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages
We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance
Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This {\it beat coupling} effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated {\it average} density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including…
Future CMB Constraints on Early, Cold, or Stressed Dark Energy
We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c_s^2 <1 (cold dark energy) and anisotropic stresses parameterized with a viscosity parameter c_vis^2. We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c_s^2. The constraints on EDE primordial energy density are however unaffected. We also calculate the future …
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg(2) to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly alpha forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly alpha forest and a strong detection from the Data R…
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 RAS © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies
We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call CMASS with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubb…
Induced gravity and the attractor dynamics of dark energy/dark matter
Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotica…
Constraints on massive sterile neutrino species from current and future cosmological data
Sterile massive neutrinos are a natural extension of the Standard Model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states as well as on the number of sterile states. The so-called (3+2) models with three sub-eV active massive neutrinos plus two sub-eV massive sterile species is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, Big Bang Nucle…
Testing standard and nonstandard neutrino physics with cosmological data
Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally pow…
Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications
The Sloan Digital Sky Survey (SDSS) surveyed 14,555 square degrees, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between $z=0.45$ and $z=0.65$, constructed from the SDSS using methods described in Ross et al. (2011). This data-set spans 11,000 square degrees and probes a volume of $3h^{-3} \rm{Gpc}^3$, making it the largest volume ever used for galaxy clustering measurements. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadrati…
Constraints on neutrino masses from Planck and Galaxy clustering data
We present here bounds on neutrino masses from the combination of recent Planck cosmic microwave background (CMB) measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find Sigma m(v) < 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck C…
Sterile neutrino models and nonminimal cosmologies
Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant $w\ensuremath{\ne}\ensuremath{-}1$ dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, ($3+2$) massive neutrino models with $\ensuremath{\sim}0.5\text{ }\text{ }\mathrm{eV}$ sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with nu…