0000000000133933
AUTHOR
Stanislav N. Gorb
Role of Surface Chemistry in the Superhydrophobicity of the Springtail Orchesella cincta (Insecta:Collembola)
Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design. Recent research has mainly focused on the intricate microstructures at the cuticle surface. Here we study the role of the cuticle chemistry for the Collembola species Orchesella cincta (Collembola, Entomobryidae). O. cincta uses a relatively simple cuticle structure with prima…
Effects of cuticle structure and crystalline wax coverage on the coloration in young and old males of Calopteryx splendens and Calopteryx virgo
Male secondary sexual characters, such as color patterns, are often investigated at the macroscale level. However, micro- and nanoscale levels of morphological investigations may reveal functional features responsible for a particular coloration, thus providing more information, e.g., about the condition dependence of male sexual characters. The aim of this paper was to investigate cuticle color and its structure in males of two congeneric damselfly species, Calopteryx splendens and Calopteryx virgo, and reveal possible color changes with age. According to spectrometer measurements, C. splendens males were bluer and had a greater saturation of blue in their abdomen than C. virgo males, whic…
Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails
Gluing can be a highly efficient mechanism of prey capture, as it should require less complex sensory–muscular feedback. Whereas it is well known in insects, this mechanism is much less studied in arachnids, except spiders. Soil-dwelling harvestmen (Opiliones, Nemastomatidae) bear drumstick-like glandular hairs (clavate setae) at their pedipalps, which were previously hypothesized to be sticky and used in prey capture. However, clear evidence for this was lacking to date. Using high-speed videography, we found that the harvestman Mitostoma chrysomelas was able to capture fast-moving springtails (Collembola) just by a slight touch of the pedipalp. Adhesion of single clavate setae increased p…
Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability
Many biological attachment devices of insects, spiders and geckos consist of arrays of hairs (setae), which are terminated by contact elements of different shapes. However, the most frequently observed shape is a thin plate-like spatula. In spite of a rather wide range of sizes, most spatulae of different animals are not uniform, but rather possess a gradient in thickness and width. Here we show that the spatulae of insects and geckos become gradually thinner and wider approaching the end. This geometrical effect is explained in the present paper, by using a numerical approach for the modelling of the van der Waals adhesion and friction between the contact elements and the substrate. The ap…
Sex-related effects in the superhydrophobic properties of damselfly wings in young and old Calopteryx splendens.
Numerous sex-related morphological adaptations are connected to reproductive behavior in animals. For example, females of some insect species can submerge during oviposition, which may lead to sex-related adaptations in the hydrophobicity (water-repellency) due to specialization of certain morphological structures. On the other hand, ageing can cause changes in hydrophobicity of the surface, because the morphological structures can wear with age. Here, we investigated sex-and age-related differences in wing hydrophobicity and in morphology (spine density, wax cover characteristics, size of females' pseudopterostigma) potentially related to hydrophobicity of Calopteryx splendens damselflies.…
Crystalline wax coverage of the imaginal cuticle inCalopteryx splendens(Odonata: Calopterygidae)
Abstract In this study we use high resolution SEM to describe the diversity of wax crystals and their distribution on different morphological structures in male individuals of Calopteryx splendens. The entire cuticle surface of this damselfly, with the exception of ommatidia and ocelli, is covered with crystalline wax in dimensions from submicron to micron range. It is shown that shape - rod-like, plate like, filamentous, etc. -, size, and density of crystals vary on different surfaces and in individuals of different ages. Additionally, we demonstrate different types of damage to the crystalline wax layer: scratches, compressions, wear, and contamination. The primary function of the wax cry…
The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones)
Pedipalps are the most versatile appendages of arachnids. They can be equipped with spines (Amblypygi), chelae (Scorpiones), or adhesive pads (Solifugae), all of which are modifications to grasp and handle fast-moving prey. Harvestmen (Opiliones) show a high diversity of pedipalpal morphologies. Some are obviously related to prey capture, like the enlargement and heavy spination of Laniatores pedipalps. Many Dyspnoi, by contrast, exhibit thin, thread-like pedipalps that are covered with complex glandular setae (clavate setae). These extrude viscoelastic glue that is used to immobilize prey items. Comparable setae (plumose setae) have previously been found in representatives of both Eupnoi a…
Crystalline wax coverage of the imaginal cuticule in Calopteryx splendens (Odonata: Calopterygidae)
In this study we use high resolution SEM to describe the diversity of wax crystals and their distribution on different morphological structures in male individuals of Calopteryx splendens. The entire cuticle surface of this damselfly, with the exception of ommatidia and ocelli, is covered with crystalline wax in dimensions from submicron to micron range. It is shown that shape – rod-like, plate like, filamentous, etc. –, size, and density of crystals vary on different surfaces and in individuals of different ages. Additionally, we demonstrate different types of damage to the crystalline wax layer: scratches, compressions, wear, and contamination. The primary function of the wax crystalline …