0000000000135182

AUTHOR

Gustavo E. Romero

Space, time, and irreversibility : the philosophical problems of contemporary astrophysics

Scientific philosophy is that which is informed by science. It uses exact tools such as logic and mathematics and provides a framework for scientific activity to solve more general questions about nature, the language we use to describe it, and the knowledge we obtain thanks to it. Many of the scientific philosophy theories can be proven and evaluated using scientific evidence. In this paper, I focus on showing how several classical philosophy topics, such as the nature of space and time or the dimensionality of the future, can be addressed philosophically using the tools from current astrophysics research and, in particular, from the study of black holes and gravitational waves.

research product

AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…

research product

The Highly Collimated Radio Jet of HH 80–81: Structure and Nonthermal Emission

Radio emission from protostellar jets is usually dominated by free-free emission from thermal electrons. However, in some cases, it has been proposed that non-thermal emission could also be present. This additional contribution from non-thermal emission has been inferred through negative spectral indices at centimeter wavelengths in some regions of the radio jets. In the case of HH 80-81, one of the most powerful protostellar jets known, linearly polarized emission has also been detected, revealing that the non-thermal emission is of synchrotron nature from a population of relativistic particles in the jet. This result implies that an acceleration mechanism should be taking place in some pa…

research product