0000000000135606
AUTHOR
A.-m. Raita-hakola
Updating strategies for distance based classification model with recursive least squares
Abstract. The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach ma…
PIECEWISE ANOMALY DETECTION USING MINIMAL LEARNING MACHINE FOR HYPERSPECTRAL IMAGES
Abstract. Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are lowering. Anomaly detection is one of the popular remote sensing applications, which benefits from real-time solutions. A real-time solution has its limitations, for example, due to a large amount of hyperspectral data, platform’s (drones or a cube satellite) constraints on payload and processing capability. Other examples are the limitations of available energy and the complexity of the machine learning models. When anomalies are detected in real-time from the hyp…