0000000000136106

AUTHOR

Susanna C. Manrubia

0000-0003-0134-2785

Parsimonious scenario for the emergence of viroid-like repliconsde novo

AbstractViroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or severalde novoindependent evolutionary origins in plants. Here we discuss the plausibility ofde novoemergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative appr…

research product

Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo

This article belongs to the Special Issue Viroid-2018: International Conference on Viroids and Viroid-Like RNAs. Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixe…

research product

SHAPE MATTERS: EFFECT OF POINT MUTATIONS ON RNA SECONDARY STRUCTURE

A suitable model to dive into the properties of genotype-phenotype landscapes is the relationship between RNA sequences and their corresponding minimum free energy secondary structures. Relevant issues related to molecular evolvability and robustness to mutations have been studied in this framework. Here, we analyze the one-mutant neighborhood of the predicted secondary structure of 46 different RNAs, including tRNAs, viroids, larger molecules such as Hepatitis-δ virus, and several random sequences. The probability distribution of the effect of point mutations in linear structural motifs of the secondary structure is well fit by Pareto or Lognormal probability distributions functions, indep…

research product