0000000000136192

AUTHOR

Joni Parkkonen

Multiscale microstructural characterization of particulate-reinforced composite with non-destructive X-ray micro- and nanotomography

Abstract Methods based on X-ray tomography are developed to study the relevant statistical quantities describing the microstructural inhomogeneity of particulate reinforced composites. The developed methods are applied in estimating microstructural inhomogeneity parameters of composites containing metallic glass particles in metal matrix, extruded in varying pressure loads. This study indicates that the critical characteristics with regard to the effect of particle clustering are cluster size and shape, local volume fraction of particles in the cluster and the distance between clusters. The results demonstrate that the spatial distribution of reinforcement is very uneven and the amount of p…

research product

Improved Radio-Cesium Detection Using Quantitative Real-Time Autoradiography

Cesium-134 and -137 are prevalent, long-lived, radio-toxic contaminants released into the environment during nuclear accidents. Large quantities of insoluble, respirable Cs-bearing microparticles (CsMPs) were released into the environment during the Fukushima Daiichi nuclear accident. Monitoring for CsMPs in environmental samples is essential to understand the impact of nuclear accidents. The current detection method used to screen for CsMPs (phosphor screen autoradiography) is slow and inefficient. We propose an improved method: real-time autoradiography that uses parallel ionization multiplier gaseous detectors. This technique permits spatially resolved measurement of radioactivity while …

research product

Independent Isotopic Product Yields in 25 MeV and 50 MeV Charged Particle Induced Fission of 238U and 232Th

Abstract Independent isotopic yields for most elements from Zn to La in 25-MeV proton-induced fission of 238U and 232Th have been determined at the IGISOL facility in the University of Jyvaskyla. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in 50-MeV proton-induced fission of 238U and for Zn, Ga, Rb, Sr, Cd and In in 25-MeV deuterium-induced fission of 238U have been measured. The utilised technique recently developed at the University of Jyvaskyla, is based on a combination of the ion guide technique and the ability of a Penning trap to unambiguously identify the isotopes by their atomic mass. Since the yields are determined by ion counting, no prior knowledge beyond the …

research product

Publisher Correction: X-Ray Nanotomography of Individual Pulp Fibre Bonds Reveals the Effect of Wall Thickness on Contact Area

Fibre bonds play an essential role in various properties of paper. Much research has focused on their strength, but the determination of the actual contact area also provides a challenge. Many of the research methods rely on optical tools, which are restricted by the wavelength of light that is utilised. Novel X-ray computed tomography devices utilise X-rays in studying the inner structure of materials, and surpass the optical methods in terms of resolution, allowing detection of even smaller details and variations in distance between the fibres in the bond intersection area. X-ray nanotomography was used to image 26 individual cellulose fibre bonds made of springwood and summerwood fibres …

research product

Imaging connected porosity of crystalline rock by contrast agent-aided X-ray microtomography and scanning electron microscopy

We set out to study connected porosity of crystalline rock using X-ray microtomography and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X-ray microtomography and SEM-EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X-ray microtomography and SEM-EDS. The samples were imaged with X-ray microtomography, immersed in a saturated caesium chlorid…

research product

Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed

research product

Pore and mineral structure of rock using nano-tomographic imaging

ABSTRACTIn order to better understand the micrometer-scale structure of rock and its transport properties which arise from it, seven monomineral samples from two sites (Olkiluoto and Sievi, Finland) were studied with micro- and nanotomography and scanning electron microscopy. From the veined gneiss of Olkiluoto we studied biotite, potassium feldspar, plagioclase (composition of oligoclase) and cordierite, and from Sievi tonalite biotite and two grains of plagioclase (albite). These minerals were the main minerals of these samples. Samples were carefully separated and selected using heavy liquid separation and stereomicroscopy, their three dimensional structure was imaged using X-ray tomogra…

research product

Black Bioinks from Superstructured Carbonized Lignin Particles

A renewable source of carbon black is introduced by the processing of lignin from agro-forestry residues. Lignin side streams are converted into spherical particles by direct aerosolization followed by carbonization. The obtained submicron black carbon is combined with cellulose nanofibers, which act as a binder and rheology modifier, resulting in a new type of colloidal bioink. The bioinks are tested in handwriting and direct ink writing. After consolidation, the black bioinks display total light reflectance (%R) at least three times lower than commercial black inks (reduction from 12 to 4%R). A loading of up to 20% of nanofibers positively affects the cohesion of the dried bioink (1 to 16…

research product

Mathematical modelling of sustainable bioresidual concrete

In the production of cement, which is the main component of concrete production, the process generates about 5% of the global carbon dioxide emissions. In addition, bioproduct and pulp mills produce signi_cant quantities of soda ash and bio-ash, which is still largely unused. In this paper we will introduce our study related to improving the environmental friendliness of concrete used in construction by utilizing pulp mill waste while its long-term durability and strength and porosity properties meet the goals set for construction. The project `sustainable bioresidual concrete' is on-going and only preliminary numerical results with measurements are presented here. peerReviewed

research product

Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering

Selective laser sintering (SLS) 3D printing was utilized to fabricate highly porous carbonous electrodes. The electrodes were prepared by using a mixture of fine graphite powder and either polyamide-12, polystyrene, or polyurethane polymer powder as SLS printing material. During the printing process the graphite powder was dispersed uniformly on the supporting polymer matrix. Graphite’s concentration in the mixture was varied between 5 and 40 wt % to find the correlation between the carbon content and conductivity. The graphite concentration, polymer matrix, and printing conditions all had an impact on the final conductivity. Due to the SLS printing technique, all the 3D printed electrodes …

research product

Imaging connected porosity of crystalline rock by contrast agent-aided X-ray microtomography and scanning electron microscopy

We set out to study connected porosity of crystalline rock using X‐ray microtomography and scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM‐EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X‐ray microtomography and SEM‐EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X‐ray microtomography and SEM‐EDS. The samples were imaged with X‐ray microtomography, immersed in a saturated caesium chlorid…

research product

Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy

The spatial porosity and mineral distribution of geological materials strongly affects transport processes in them. X-ray micro computed tomography (X-mu CT) has proven to be a powerful tool for characterizing the spatial mineral distribution of geological samples in 3-D. However, limitations in resolution prevent an accurate characterization of pore space especially for tight crystalline rock samples and 2-D methods such as C-14-polymethylmethacrylate (C-14-PMMA) autoradiography and scanning electron microscopy (SEM) are needed. The spatial porosity and mineral distributions of tight crystalline rock samples from Aspo, Sweden, and Olkiluoto, Finland, were studied here. The X-mu CT were use…

research product

The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I – Effects on selenium(IV) uptake in Brassica oleracea

Selenium (Se) is an essential micronutrient but toxic when taken in excessive amounts. Therefore, understanding the metabolic processes related to selenium uptake and bacteria-plant interactions coupled with selenium metabolism are of high importance. We cultivated Brassica oleracea with the previously isolated heterotrophic aerobic Se(IV)-reducing Pseudomonas sp. T5-6-I strain to better understand the phenomena of bacteria-mediated Se(IV) reduction on selenium availability to the plants. B. oleracea grown on Murashige and Skoog medium (MS-salt agar) with and without of Pseudomonas sp. were amended with Se(IV)/75Se(IV), and selenium transfer into plants was studied using autoradiography and…

research product

Quasi-brittle porous material: Simulated effect of stochastic air void structure on compressive strength

Abstract The effect of porosity comprised of spherical air voids on the compressive strength of quasi-brittle material was studied via simulations. The simulated porous structures were based on pore size distributions of two mortar samples measured by X-ray microtomography. While the simulation method set practical limits on the size of sample, the base of the statistics was established by simulating 128 small structures generated by sampling from pore structures of two mortars. By studying the application of the classical strength-porosity formulas to the simulated data, a new simple model was formed. A linear relationship was achieved between the cubic root of air void fraction (porosity)…

research product