0000000000136589

AUTHOR

Soumya Ghose

A probabilistic framework for automatic prostate segmentation with a statistical model of shape and appearance

International audience; Prostate volume estimation from segmented prostate contours in Trans Rectal Ultrasound (TRUS) images aids in diagnosis and treatment of prostate diseases, including prostate cancer. However, accurate, computationally efficient and automatic segmentation of the prostate in TRUS images is a challenging task owing to low Signal-To-Noise-Ratio (SNR), speckle noise, micro-calcifications and heterogeneous intensity distribution inside the prostate region. In this paper, we propose a probabilistic framework for propagation of a parametric model derived from Principal Component Analysis (PCA) of prior shape and posterior probability values to achieve the prostate segmentatio…

research product

A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images

Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi…

research product

A Survey of Prostate Segmentation Methodologies in Ultrasound, Magnetic Resonance and Computed Tomography Images

Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland segmenta…

research product

Multiple Mean Models of Statistical Shape and Probability Priors for Automatic Prostate Segmentation

International audience; Low contrast of the prostate gland, heterogeneous intensity distribution inside the prostate region, imaging artifacts like shadow regions, speckle and significant variations in prostate shape, size and in- ter dataset contrast in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a probabilistic framework for automatic initialization and propagation of multiple mean parametric models derived from principal component analysis of shape and posterior probability information of the prostate region to segment the prostate. Unlike traditional statistical models of shape and int…

research product

Weighted Likelihood Function of Multiple Statistical Parameters to Retrieve 2D TRUS-MR Slice Correspondece for Prostate Biopsy

International audience; This paper presents a novel method to identify the 2D axial Magnetic Resonance (MR) slice from a pre-acquired MR prostate volume that closely corresponds to the 2D axial Transrectal Ultrasound (TRUS) slice obtained during prostate biopsy. The shape-context representations of the segmented prostate contours in both the imaging modalities are used to establish point correspondences using Bhattacharyya distance. Thereafter, Chi-square distance is used to find the prostate shape similarities between the MR slices and the TRUS slice. Normalized mutual information and correlation coefficient between the TRUS and MR slices are computed to find the information theoretic simi…

research product

Spectral clustering of shape and probability prior models for automatic prostate segmentation.

Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape and appearance parameters…

research product

Texture Guided Active Appearance Model Propagation for Prostate Segmentation

Fusion of Magnetic Resonance Imaging (MRI) and Trans Rectal Ultra Sound (TRUS) images during TRUS guided prostate biopsy improves localization of the malignant tissues. Segmented prostate in TRUS and MRI improve registration accuracy and reduce computational cost of the procedure. However, accurate segmentation of the prostate in TRUS images can be a challenging task due to low signal to noise ratio, heterogeneous intensity distribution inside the prostate, and imaging artifacts like speckle noise and shadow. We propose to use texture features from approximation coefficients of Haar wavelet transform for propagation of a shape and appearance based statistical model to segment the prostate i…

research product

A Shape-based Statistical Method to Retrieve 2D TRUS-MR Slice Correspondence for Prostate Biopsy

International audience; This paper presents a method based on shape-context and statistical measures to match interventional 2D Trans Rectal Ultrasound (TRUS) slice during prostate biopsy to a 2D Magnetic Resonance (MR) slice of a pre-acquired prostate volume. Accurate biopsy tissue sampling requires translation of the MR slice information on the TRUS guided biopsy slice. However, this translation or fusion requires the knowledge of the spatial position of the TRUS slice and this is only possible with the use of an electro-magnetic (EM) tracker attached to the TRUS probe. Since, the use of EM tracker is not common in clinical practice and 3D TRUS is not used during biopsy, we propose to per…

research product

A spline-based non-linear diffeomorphism for multimodal prostate registration.

This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least…

research product

Spectral Clustering of Shape and Probability Prior Models for Automatic Prostate Segmentation in Ultrasound Images

International audience; Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape a…

research product

A Supervised Learning Framework for Automatic Prostate Segmentation in Trans Rectal Ultrasound Images

International audience; Heterogeneous intensity distribution inside the prostate gland, significant variations in prostate shape, size, inter dataset contrast variations, and imaging artifacts like shadow regions and speckle in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a supervised learning schema based on random forest for automatic initialization and propagation of statistical shape and appearance model. Parametric representation of the statistical model of shape and appearance is derived from principal component analysis (PCA) of the probability distribution inside the prostate and PC…

research product

A Coupled Schema of Probabilistic Atlas and Statistical Shape and Appearance Model for 3D Prostate Segmentation in MR Images

International audience; A hybrid framework of probabilistic atlas and statistical shape and appearance model (SSAM) is proposed to achieve 3D prostate segmentation. An initial 3D segmentation of the prostate is obtained by registering the probabilistic atlas to the test dataset with deformable Demons registration. The initial results obtained are used to initialize multiple SSAMs corresponding to the apex, central and base regions of the prostate gland to incorporate local variabilities. Multiple mean parametric models of shape and appearance are derived from principal component analysis of prior shape and intensity information of the prostate from the training data. The parameters are then…

research product

A hybrid framework of multiple active appearance models and global registration for 3D prostate segmentation in MRI.

International audience; Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient 3D segmentation of the prostate in MR images could be a challenging task due to inter-patient shape and intensity variability of the prostate gland. In this work, we propose to use multiple statistical shape and appearance models to segment the prostate in 2D and a global registration framework to impose shape restri…

research product

Statistical Shape and Probability Prior Model for Automatic Prostate Segmentation

International audience; Accurate prostate segmentation in Trans Rectal Ultra Sound (TRUS) images is an important step in different clinical applications. However, the development of computer aided automatic prostate segmentation in TRUS images is a challenging task due to low contrast, heterogeneous intensity distribution inside the prostate region, imaging artifacts like shadow, and speckle. Significant variations in prostate shape, size and contrast between the datasets pose further challenges to achieve an accurate segmentation. In this paper we propose to use graph cuts in a Bayesian framework for automatic initialization and propagate multiple mean parametric models derived from princi…

research product

A Non-linear Diffeomorphic Framework for Prostate Multimodal Registration

International audience; This paper presents a novel method for non-rigid registration of prostate multimodal images based on a nonlinear framework. The parametric estimation of the non-linear diffeomorphism between the 2D fixed and moving images has its basis in solving a set of non-linear equations of thin-plate splines. The regularized bending energy of the thin-plate splines along with the localization error of established correspondences is jointly minimized with the fixed and transformed image difference; where, the transformed image is represented by the set of non-linear equations defined over the moving image. The traditional thin-plate splines with established correspondences may p…

research product

Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge

Contains fulltext : 137969.pdf (Publisher’s version ) (Open Access) Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or …

research product

Joint Probability of Shape and Image Similarities to Retrieve 2D TRUS-MR Slice Correspondence for Prostate Biopsy

International audience; This paper presents a novel method to identify the 2D axial Magnetic Resonance (MR) slice from a pre-acquired MR prostate volume that closely corresponds to the 2D axial Transrectal Ultrasound (TRUS) slice obtained during prostate biopsy. The method combines both shape and image intensity information. The segmented prostate contours in both the imaging modalities are described by shape-context representations and matched using the Chi-square distance. Normalized mutual information and correlation coefficient between the TRUS and MR slices are computed to find image similarities. Finally, the joint probability values comprising shape and image similarities are used in…

research product

Segmentation d'images robuste appliqué à l'imagerie par résonance magnétique et l'échographie de la prostate

Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonanceimages (MRI) facilitates volume estimation, multi-modal image registration, surgicalplaning and image guided prostate biopsies. The objective of this thesis is to developshape and region prior deformable models for accurate, robust and computationallyefficient prostate segmentation in TRUS and MRI images. Primary contributionof this thesis is in adopting a probabilistic learning approach to achieve soft classificationof the prostate for automatic initialization and evolution of a shape andregion prior deformable models for prostate segmentation in TRUS images. Twodeformable models are developed for the purpose. An…

research product