0000000000136615

AUTHOR

Matthias Opel

0000-0003-4735-9574

showing 2 related works from this author

Spin Hall magnetoresistance in antiferromagnetic insulators

2020

Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $\alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an ext…

010302 applied physicsCondensed Matter - Materials ScienceMagnetization dynamicsMaterials scienceMagnetoresistanceSpintronicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldMagnetizationFerromagnetismFerrimagnetism0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyJournal of Applied Physics
researchProduct

Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures

2017

We investigate the spin Hall magnetoresistance in thin-film bilayer heterostructures of the heavy metal Pt and the antiferromagnetic insulator NiO. While rotating an external magnetic field in the easy plane of NiO, we record the longitudinal and the transverse resistivity of the Pt layer and observe an amplitude modulation consistent with the spin Hall magnetoresistance. In comparison to Pt on collinear ferrimagnets, the modulation is phase shifted by ${90}^{\ensuremath{\circ}}$ and its amplitude strongly increases with the magnitude of the magnetic field. We explain the observed magnetic field dependence of the spin Hall magnetoresistance in a comprehensive model taking into account magne…

PhysicsCondensed Matter - Materials ScienceMagnetoresistanceSpintronicsCondensed matter physicsSpin polarizationCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyQuantum Hall effect021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesSpin magnetic momentCondensed Matter::Materials ScienceQuantum spin Hall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesSpin Hall effectAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct