0000000000136812
AUTHOR
Manfred Mudelsee
Bunker Cave stalagmites: an archive for central European Holocene climate variability
Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high-resolution records of &delta;<sup>18</sup>O, &delta;<sup>13</sup>C values and Mg/Ca ratios. Changes in the Mg/Ca ratio are attributed to past meteoric p…
Effects of dating errors on nonparametric trend analyses of speleothem time series
A fundamental problem in paleoclimatology is to take fully into account the various error sources when examining proxy records with quantitative methods of statistical time series analysis. Records from dated climate archives such as speleothems add extra uncertainty from the age determination to the other sources that consist in measurement and proxy errors. This paper examines three stalagmite time series of oxygen isotopic composition (δ18O) from two caves in western Germany, the series AH-1 from the Atta Cave and the series Bu1 and Bu4 from the Bunker Cave. These records carry regional information about past changes in winter precipitation and temperature. U/Th and radiocarbon dat…
Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data
Abstract. Here we present high-resolution stable isotope and lamina thickness profiles as well as radiocarbon data for the Holocene stalagmite ER 76 from Grotta di Ernesto (north-eastern Italy), which was dated by combined U-series dating and lamina counting. ER 76 grew between 8 ka (thousands of years before 2000 AD) and today, with a hiatus from 2.6 to 0.4 ka. Data from nine meteorological stations in Trentino show a significant influence of the North Atlantic Oscillation (NAO) on winter temperature and precipitation in the cave region. Spectral analysis of the stable isotope signals of ER 76 reveals significant peaks at periods of 110, 60–70, 40–50, 32–37 and around 25 a. Except for the …