0000000000139003
AUTHOR
Chatchakorn Eurtivong
Engineering faster transglycosidases and their acceptor specificity
Transglycosidases are enzymes that have the potential to catalyze the synthesis of a wide range of high-value compounds starting from biomass-derived feedstocks. Improving their activity and broadening the substrate range are important goals to enable the widespread application of this family of biocatalysts. In this work, we engineered 20 mutants of the rice transglycosidase Os9BGlu31 and evaluated their catalysis in 462 reactions over 18 different substrates. This allowed us to identify mutants that expanded their substrate range and showed high activity, including W243L and W243N. We also developed double mutants that show very high activity on certain substrates and exceptional specific…
The discovery of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines
Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense which seriously affects human health in Africa. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work herein describes the design and syntheses of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines, with compound 13, the 4-(2-methoxyphenyl)-6-(pyridine-3-yl)pyrimidin-2-amine demonstrating an IC50 value of 0.38 μM and a promising off-target ADME-Tox profile in vitro. In silico molecular target investigations showed rhodesain to be a pu…
CCDC 2012793: Experimental Crystal Structure Determination
Related Article: William J. Robinson, Annie E. Taylor, Solange Lauga-Cami, George W. Weaver, Randolph R.J. Arroo, Marcel Kaiser, Sheraz Gul, Maria Kuzikov, Bernhard Ellinger, Kuldip Singh, Tanja Schirmeister, Adolfo Botana, Chatchakorn Eurtivong, Avninder S. Bhambra|2021|Eur.J.Med.Chem.|209|112871|doi:10.1016/j.ejmech.2020.112871