0000000000140408
AUTHOR
Giovanni Carugno
Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling
We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as $\propto (d^2\;a\;n^4\;t)^2/z_0^8$, where $z_0$ is the average atom-surface distance, $d$ the atomic dipole moment, $a$ the mirror's effective oscillation amplitude, $n$ the initial principal quantum number, and $t$ the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance $\sim 2\cdot10 \, \mu$m from a semiconductor substrate, whose dielectric constant is periodically driven by an ext…
Spectroscopy of Alkali Atoms in Solid Matrices of Rare Gases: Experimental Results and Theoretical Analysis
We present an experimental and theoretical investigation of the spectroscopy of dilute alkali atoms in a solid matrix of inert gases at cryogenic temperatures, specifically Rubidium atoms in a solid Argon or Neon matrix, and related aspects of the interaction energies between the alkali atoms and the atoms of the solid matrix. The system considered is relevant for matrix isolation spectroscopy, and it is at the basis of a recently proposed detector of cosmological axions, exploiting magnetic-type transitions between Zeeman sublevels of alkali atoms in a magnetic field, tuned to the axion mass, assumed in the meV range. Axions are one of the supposed constituents of the dark matter (DM) of t…