0000000000141949

AUTHOR

Anna Gottschlich

The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity.

Objective In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. Methods Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was adminis…

research product

Unique Features of the Low Molecular Weight Probe Salicylaldehyde in the Detection of Nanomolar Peroxynitrite Fluxes

research product

Chronic Therapy with Isosorbide-5-Mononitrate Causes Endothelial Dysfunction and Oxidative Stress – Improvement by Endothelin-Receptor Blocker (Bosentan) Cotherapy

research product

Chronic Therapy With Isosorbide-5-Mononitrate Causes Endothelial Dysfunction, Oxidative Stress and a Marked Increase in Vascular Endothelin-1 Expression

Aims Isosorbide-5-mononitrate (ISMN) is one of the most frequently used compounds in the treatment of coronary artery disease predominantly in the USA. However, ISMN was reported to induce endothelial dysfunction, which was corrected by vitamin C pointing to a crucial role of reactive oxygen species (ROS) in causing this phenomenon. We sought to elucidate the mechanism how ISMN causes endothelial dysfunction and oxidative stress in vascular tissue. Methods and results Male Wistar rats ( n = 69 in total) were treated with ISMN (75 mg/kg/day) or placebo for 7 days. Endothelin (ET) expression was determined by immunohistochemistry in aortic sections. Isosorbide-5-mononitrate infusion caused si…

research product