0000000000142199
AUTHOR
Guoliang Wei
Deconvolution filtering for nonlinear stochastic systems with randomly occurring sensor delays via probability-dependent method
This paper deals with a robustH∞deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable sequence following the Bernoulli distribution with time-varying probability. The purpose is to design anH∞deconvolution filter such that, for all the admissible randomly occurring sensor delays, nonlinear disturbances, and external noises, the input signal distorted by the transmission channel could be recovered to a specified extent. By utilizing the constructed Lyapunov functional relying on the time-varying probability parameters, the desired su…
Nonfragile Gain-Scheduled Control for Discrete-Time Stochastic Systems with Randomly Occurring Sensor Saturations
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/629621 Open Access This paper is devoted to tackling the control problem for a class of discrete-time stochastic systems with randomly occurring sensor saturations. The considered sensor saturation phenomenon is assumed to occur in a random way based on the time-varying Bernoulli distribution with measurable probability in real time. The aim of the paper is to design a nonfragile gain-scheduled controller with probability-dependent gains which can be achieved by solving a convex optimization problem via semidefinite programming method. Subsequen…