0000000000142417

AUTHOR

Dominik J. Schwarz

0000-0003-2413-0881

showing 4 related works from this author

Cosmic QCD Epoch at Nonvanishing Lepton Asymmetry

2018

We investigate how a lepton asymmetry impacts the cosmic trajectory in the QCD phase diagram. We study the evolution of chemical potentials during the QCD epoch of the early Universe using susceptibilities from lattice QCD to interpolate between an ideal quark gas and an ideal hadron resonance gas. The lepton asymmetry affects the evolution of all chemical potentials. The standard cosmic trajectory is obtained assuming tiny lepton and baryon asymmetries. For larger lepton asymmetry, the charge chemical potential exceeds the baryon chemical potential before pion annihilation.

QuarkParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryHigh Energy Physics - Phenomenology (hep-ph)PionHigh Energy Physics - Lattice0103 physical sciences010306 general physicsmedia_commonQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyLattice QCDUniverseBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The cosmic QCD transition for large lepton flavour asymmetries

2022

We study the impact of large lepton flavour asymmetries on the cosmic QCD transition. Scenarios of unequal lepton flavour asymmetries are observationally almost unconstrained and therefore open up a whole new parameter space for the cosmic QCD transition. We find that for large asymmetries the formation of a Bose-Einstein condensate of pions can occur and identify the corresponding parameter space. In the vicinity of the QCD transition scale, we express the pressure in terms of a Taylor expansion with respect to the complete set of chemical potentials. The Taylor coefficients rely on input from lattice QCD calculations from the literature. The domain of applicability of this method is discu…

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::Experiment530Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

How to relax the cosmological neutrino mass bound

2019

We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, $N_{\mathrm{eff}}$, and the neutrino mass, $m_{\nu}$. Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out cle…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicscosmological parameters from LSS01 natural sciencesCosmologyMomentumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)cosmological0103 physical sciencesPhysicsCOSMIC cancer database010308 nuclear & particles physicsMatter power spectrumHigh Energy Physics::Phenomenologycosmological parameters from CMBRAstronomy and AstrophysicsObservableMarkov chain Monte Carloneutrino masses from cosmologyHigh Energy Physics - Phenomenologyparameters from CMBRsymbolsHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Lepton flavor asymmetries and the mass spectrum of primordial black holes

2020

We study the influence of lepton flavour asymmetries on the formation and the mass spectrum of primordial black holes. We estimate the detectability of their mergers with LIGO/Virgo and show that the currently published gravitational wave events may actually be described by a primordial black hole spectrum from non-zero asymmetries. We suggest to use gravitational-wave astronomy as a novel tool to probe how lepton flavour asymmetric the Universe has been before the onset of neutrino oscillations.

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsGravitational waveAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyLIGOHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMass spectrumHigh Energy Physics::Experiment010306 general physicsNeutrino oscillationFlavorAstrophysics - Cosmology and Nongalactic AstrophysicsLeptonPhysical Review D
researchProduct