0000000000142599

AUTHOR

Norman Haag

showing 2 related works from this author

Momentum and energy dissipation of hot electrons in a Pb/Ag(111) quantum well system

2021

The band structure of multilayer systems plays a crucial role for the ultrafast hot carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited electrons in a highly ordered Pb monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). Using time-resolved two-photon momentum microscopy with femtosecond visible light pulses, we show that the electron dynamics of the Pb/Ag(111) quantum well system is largely dominated by two types of scattering processes: (i) isotropic intraband scattering processes within the quantum well state (QWS) and (ii) isotropic interband sca…

Materials scienceScatteringBilayerPosition and momentum space02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsExcited state0103 physical sciencesMonolayerPhysics::Atomic and Molecular ClustersQuasiparticle010306 general physics0210 nano-technologyElectronic band structureQuantum wellPhysical Review B
researchProduct

Influence of alkylphosphonic acid grafting on the electronic and magnetic properties of La2/3Sr1/3MnO3 surfaces

2015

Self-assembled monolayers (SAMs) are highly promising materials for molecular engineering of electronic and spintronics devices thanks to their surface functionalization properties. In this direction, alkylphosphonic acids have been used to functionalize the most common ferromagnetic electrode in organic spintronics: La2/3Sr1/3MnO3 (LSMO). However, a study on the influence of SAMs grafting on LSMO electronic and magnetic properties is still missing. In this letter, we probe the influence of alkylphosphonic acids-based SAMs on the electronic and magnetic properties of the LSMO surface using different spectroscopies. We observe by X-ray photoemission and X-ray absorption that the grafting of …

Materials scienceSpintronicsMagnetismMagnetismGeneral Physics and AstronomyNanotechnologySelf-assembled monolayerSelf-assembled monolayersSurfaces and InterfacesGeneral ChemistrySpintronicsCondensed Matter PhysicsSurfaces Coatings and FilmsFerromagnetismMonolayerSurface modificationWork functionUltraviolet photoelectron spectroscopy
researchProduct