0000000000142959

AUTHOR

Tobias Würfl

Patch-based Carcinoma Detection on Confocal Laser Endomicroscopy Images -- A Cross-Site Robustness Assessment

Deep learning technologies such as convolutional neural networks (CNN) provide powerful methods for image recognition and have recently been employed in the field of automated carcinoma detection in confocal laser endomicroscopy (CLE) images. CLE is a (sub-)surface microscopic imaging technique that reaches magnifications of up to 1000x and is thus suitable for in vivo structural tissue analysis. In this work, we aim to evaluate the prospects of a priorly developed deep learning-based algorithm targeted at the identification of oral squamous cell carcinoma with regard to its generalization to further anatomic locations of squamous cell carcinomas in the area of head and neck. We applied the…

research product

Transferability of Deep Learning Algorithms for Malignancy Detection in Confocal Laser Endomicroscopy Images from Different Anatomical Locations of the Upper Gastrointestinal Tract

Squamous Cell Carcinoma (SCC) is the most common cancer type of the epithelium and is often detected at a late stage. Besides invasive diagnosis of SCC by means of biopsy and histo-pathologic assessment, Confocal Laser Endomicroscopy (CLE) has emerged as noninvasive method that was successfully used to diagnose SCC in vivo. For interpretation of CLE images, however, extensive training is required, which limits its applicability and use in clinical practice of the method. To aid diagnosis of SCC in a broader scope, automatic detection methods have been proposed. This work compares two methods with regard to their applicability in a transfer learning sense, i.e. training on one tissue type (f…

research product