0000000000143636
AUTHOR
Oleg Kornilov
Magic numbers, excitation levels, and other properties of small neutral 4He clusters (Nor = 50).
The ground-state energies and the radial and pair distribution functions of neutral 4He clusters are systematically calculated by the diffusion Monte Carlo method in steps of one 4He atom from 3 to 50 atoms. In addition the chemical potential and the low-lying excitation levels of each cluster are determined with high precision. These calculations reveal that the "magic numbers" observed in experimental 4He cluster size distributions, measured for free jet gas expansions by nondestructive matter-wave diffraction, are not caused by enhanced stabilities. Instead they are explained in terms of an enhanced growth due to sharp peaks in the equilibrium concentrations in the early part of the expa…
Diffraction of neutral helium clusters: evidence for "magic numbers".
The size distributions of neutral 4He clusters in cryogenic jet beams, analyzed by diffraction from a 100 nm period transmission grating, reveal magic numbers at N=10-11, 14, 22, 26-27, and 44 atoms. Whereas magic numbers in nuclei and clusters are attributed to enhanced stabilities, this is not expected for quantum fluid He clusters on the basis of numerous calculations. These magic numbers occur at threshold sizes for which the quantized excitations calculated with the diffusion Monte Carlo method are stabilized, thereby providing the first experimental confirmation for the energy levels of 4He clusters.
Magic numbers, excitation levels, and other properties of small neutral math clusters (N < 50)
The ground-state energies and the radial and pair distribution functions of neutral math clusters are systematically calculated by the diffusion Monte Carlo method in steps of one math atom from 3 to 50 atoms. In addition the chemical potential and the low-lying excitation levels of each cluster are determined with high precision. These calculations reveal that the “magic numbers” observed in experimental math cluster size distributions, measured for free jet gas expansions by nondestructive matter-wave diffraction, are not caused by enhanced stabilities. Instead they are explained in terms of an enhanced growth due to sharp peaks in the equilibrium concentrations in the early part of the e…