0000000000143975
AUTHOR
Pietro Salvatore Carollo
Nonsense codons suppression. An acute toxicity study of three optimized TRIDs in murine model, safety and tolerability evaluation.
Stop mutations cause 11% of the genetic diseases, due to the introduction of a premature termination codon (PTC) in the mRNA, followed by the production of a truncated protein. A promising therapeutic approach is the suppression therapy by Translational Readthrough Inducing Drugs (TRIDs), restoring the expression of the protein. Recently, three new TRIDs (NV848, NV914, NV930) have been proposed, and validated by several in vitro assays, for the rescue of the CFTR protein, involved in Cystic Fibrosis disease. In this work, an acute toxicological study for the three TRIDs was conducted in vivo on mice, according to the OECD No.420 guidelines. Animals were divided into groups and treated with …
A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation
During embryonic development stem cells undergo the differentiation process so that they can specialise for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, by the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role played in neurogenesis by the nuclear lamina that ensures the tethering o…
Investigating the inhibition of FTSJ1 a tryptophan tRNA-specific 2’-O-methyltransferase by NV TRIDs, as a mechanism of readthrough in nonsense mutated CFTR
Abstract: Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations, which generate a Premature Termination Codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ri-bosome’s capacity to skip a PTC, thus generating a full-length protein. “TRIDs” are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We in-vestigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their r…
Specific Irreversible Cell-Cycle Arrest and Depletion of Cancer Cells Obtained by Combining Curcumin and the Flavonoids Quercetin and Fisetin.
Background: Induced senescence could be exploited to selectively counteract the proliferation of cancer cells and target them for senolysis. We examined the cellular senescence induced by curcumin and whether it could be targeted by fisetin and quercetin, flavonoids with senolytic activity. Methods: Cell-cycle profiles, chromosome number and structure, and heterochromatin markers were evaluated via flow cytometry, metaphase spreads, and immunofluorescence, respectively. The activation of p21waf1/cip1 was assessed via RT-qPCR and immunoblotting. Senescent cells were detected via SA-β-Galactosidase staining. Results: We report that curcumin treatment specifically triggers senescence in cancer…
Inhibition of FTSJ1, a tryptophan tRNA-specific 2’-O-methyltransferase as possible mechanism to readthrough premature termination codons (UGAs) of the CFTR mRNA
Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10 % of the mutations affecting the CFTR gene are "stop" mutations, which generate a Premature Termination Codon (PTC), thus resulting in the synthesis of a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, that is the capacity of the ribosome to skip a PTC, thus generating a full-length protein. “TRIDs” are molecules exerting ribosome readthrough and for some of them the mechanism of action is still under debate. By in silico analysis as well as in vitro studies, we investigate a possible mechanism of action (MOA) by whic…
Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging.
As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural a…