0000000000143980

AUTHOR

Mari Martikainen

Hydrophobic pocket targeting probes for enteroviruses

Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron micros…

research product

Development of novel probes for enterovirus B group to study uncoating and infection

Enterovirus B group (EV-B) viruses are important human pathogens which cause a variety of diseases from mild respiratory illnesses to more severe acute infections such as myocarditis and meningitis. EV-Bs have also been associated with chronic infections and autoimmune diseases such as type I diabetes. Because of their significance, better and more accurate methods are necessary to track and visualize viruses in vitro and in vivo. This thesis focus on the development of novel probes to label viruses site-specifically and track infection in vitro. First, we established a covalent conjugation between gold nanocluster markers and EV-B viruses. We were able to visualize through electron microsc…

research product

Site-specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters

Development of precise protocols for accurate site-specific conjugation of monodisperse inorganic nanoparticles to biological material is one of the challenges in contemporary bionanoscience and nanomedicine. We report here a successful site-specific covalent conjugation of functionalized atomically monodisperse gold clusters with 1.5-nm metal cores to viral surfaces. Water-soluble Au102(para-mercaptobenzoic acid)44 clusters, functionalized by maleimide linkers to target cysteines of viral capsid proteins, were synthesized and conjugated to enteroviruses echovirus 1 and coxsackievirus B3. Quantitative analysis of transmission electron microscopy images and the known virus structures showed …

research product

Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ

Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Fo…

research product