0000000000144665
AUTHOR
Jyri Leskinen
Memeettisistä algoritmeista
A New Distributed Optimization Approach for Solving CFD Design Problems Using Nash Game Coalition and Evolutionary Algorithms
For decades, domain decomposition methods (DDM) have provided a way of solving large-scale problems by distributing the calculation over a number of processing units. In the case of shape optimization, this has been done for each new design introduced by the optimization algorithm. This sequential process introduces a bottleneck.
Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography
In this article, various metaheuristics for a numerical optimization problem with application to Electric Impedance Tomography are tested and compared. The experimental setup is composed of a real valued Genetic Algorithm, the Differential Evolution, a self adaptive Differential Evolution recently proposed in literature, and two novel Memetic Algorithms designed for the problem under study. The two proposed algorithms employ different algorithmic philosophies in the field of Memetic Computing. The first algorithm integrates a local search into the operations of the offspring generation, while the second algorithm applies a local search to individuals already generated in the spirit of life-…