0000000000144668

AUTHOR

Svetlana Matculevich

showing 10 related works from this author

On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems

2018

This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker-Planck problem appearing in computational neuroscience. We obtain computable error bounds of the functional type for the static and time-dependent case and for different boundary conditions (mixed and pure Neumann boundary conditions). Finally, we present a set of various numerical examples including discussions on mesh adaptivity and space-time discretisation. The numerical results confirm the reliability and efficiency of the error estimates derived.

Work (thermodynamics)Discretizationelliptic partial differential equations01 natural sciencesdiffuusiodiffuusio (fysikaaliset ilmiöt)mesh-adaptivityFOS: MathematicsNeumann boundary conditionApplied mathematicsBoundary value problemMathematics - Numerical Analysis0101 mathematicsDiffusion (business)virheanalyysiMathematicsosittaisdifferentiaaliyhtälötconvection-dominated diffusion problemsApplied Mathematicsta111010102 general mathematicsComputer Science - Numerical AnalysisNumerical Analysis (math.NA)a posteriori error estimation010101 applied mathematicsparabolic partial differential equationsComputational MathematicsElliptic partial differential equationA priori and a posterioriFokker–Planck equation
researchProduct

A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality

2015

We consider evolutionary reaction-diffusion problem with mixed Dirichlet--Robin boundary conditions. For this class of problems, we derive two-sided estimates of the distance between any function in the admissible energy space and exact solution of the problem. The estimates (majorants and minorants) are explicitly computable and do not contain unknown functions or constants. Moreover, it is proved that the estimates are equivalent to the energy norm of the deviation from the exact solution.

ta113InequalityApplied Mathematicsmedia_common.quotation_subjectta111Numerical Analysis (math.NA)Parabolic partial differential equationExact solutions in general relativityevolutionary reaction-diffusion problemsNorm (mathematics)FOS: MathematicsDiscrete Mathematics and CombinatoricsA priori and a posterioriApplied mathematicsBoundary value problemMathematics - Numerical AnalysisDirichlet–Robin boundary conditionsAnalysisMathematicsmedia_common
researchProduct

Guaranteed error bounds for a class of Picard-Lindelöf iteration methods

2013

We present a new version of the Picard-Lindelof method for ordinary dif- ¨ ferential equations (ODEs) supplied with guaranteed and explicitly computable upper bounds of an approximation error. The upper bounds are based on the Ostrowski estimates and the Banach fixed point theorem for contractive operators. The estimates derived in the paper take into account interpolation and integration errors and, therefore, provide objective information on the accuracy of computed approximations. peerReviewed

Discrete mathematicsClass (set theory)Banach fixed-point theoremOdeguaranteed error boundsPicard-Lindelöf methodsinversio-ongelmatelliptic boundary value problemsPower iterationApproximation errorOrdinary differential equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsa posteriori estimatesObjective informationInterpolationMathematics
researchProduct

Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems

2018

The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. Since the derivation is based on purely functional arguments, the estimates do not contain mesh dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they imply estimates for discrete norms associated with stabilised space-time IgA approximations. Finally, we illustrate the reliability and efficiency of presented error estimates for the approximate solutions recovered with IgA techniques on a model example.

Class (set theory)Computer scienceReliability (computer networking)Space timeFunctional typeParabolaValue (computer science)010103 numerical & computational mathematicsComputer Science::Numerical Analysis01 natural sciences010101 applied mathematicsApplied mathematics0101 mathematicsError detection and correctionEnergy (signal processing)
researchProduct

Guaranteed error bounds and local indicators for adaptive solvers using stabilised space–time IgA approximations to parabolic problems

2019

Abstract The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Further…

Class (set theory)Series (mathematics)Space timeContext (language use)010103 numerical & computational mathematicsType (model theory)01 natural sciencesIdentity (music)010101 applied mathematicsComputational MathematicsComputational Theory and MathematicsModeling and SimulationApplied mathematicsA priori and a posteriori0101 mathematicsEnergy (signal processing)MathematicsComputers & Mathematics with Applications
researchProduct

Fully reliable a posteriori error control for evolutionary problems

2015

Cauchy problemevolutionary problem of parabolic typeerror indicatorsosittaisdifferentiaaliyhtälötnumeeriset menetelmätvirheetOstrowski estimatesreaction-diffusion equationPoincaré-type estimatesnumeerinen analyysifunctional type a posteriori error estimatesepäyhtälötvirheanalyysiPicard-Lindelöf methoddifferentiaaliyhtälöt
researchProduct

Guaranteed error control bounds for the stabilised space-time IgA approximations to parabolic problems

2017

The paper is concerned with space-time IgA approximations of parabolic initial-boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of IgA approximations and investigate their applicability. The derivation method is based on the analysis of respective integral identities and purely functional arguments. Therefore, the estimates do not contain mesh-dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they provide computable error bounds for norms associated with stabilised space-time IgA approximations as well as imply efficient error indicators enhancing the performance of fully adap…

65N15 65N25 65N35F.2.1; G.1.0; G.1.2; G.1.3; G.1.8; B.2.3Computer Science - Numerical AnalysisG.1.8B.2.3FOS: MathematicsG.1.2Mathematics - Numerical AnalysisF.2.1G.1.3Numerical Analysis (math.NA)G.1.0
researchProduct

Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems

2019

The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Furthermore, a p…

osittaisdifferentiaaliyhtälötominaisarvotfunctional error estimatesguaranteed error boundsadaptive space–time schemesnumeerinen analyysivirheanalyysistabilised space–time IgA schemesparabolic initial-value boundary problems
researchProduct

Guaranteed error bounds for linear algebra problems and a class of Picard-Lindelöf iteration methods

2012

This study focuses on iteration methods based on the Banach fixed point theorem and a posteriori error estimates of Ostrowski. Their application for systems of linear simultaneous equations, bounded linear operators, as well as integral and differential equations is considered. The study presents a new version of the Picard–Lindelöf method for ordinary differential equations (ODEs) supplied with guaranteed and explicitly computable upper bounds of the approximation error. The estimates derived in the thesis take into account interpolation and integration errors and, therefore, provide objective information on the accuracy of computed approximations.

iterointireliabilityiterative methodComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONthe Picard–Lindelöf methodguaranteed boundsError estimatesluotettavuus
researchProduct

Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems

2018

The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. Since the derivation is based on purely functional arguments, the estimates do not contain mesh dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they imply estimates for discrete norms associated with stabilised space-time IgA approximations. Finally, we illustrate the reliability and efficiency of presented error estimates for the approximate solutions recovered with IgA techniques on a model example. peerReviewed

osittaisdifferentiaaliyhtälötstabilised space-time IgA schemesfunctional error estimatesnumeerinen analyysifully-adaptive space-time schemesapproksimointivirheanalyysiComputer Science::Numerical Analysiserror control
researchProduct