0000000000145066
AUTHOR
Giuliana Aquilanti
Revealing the local structure of CuMo1−xWxO4 solid solutions by multi-edge X-ray absorption spectroscopy
I.P. and A.K. would like to thank the support of the Latvian Council of Science project No. lzp-2019/1-0071. I.P. acknowledges the L’OREAL Baltic “For Women In Science Program” with the support of the Latvian National Commission for UNESCO and the Latvian Academy of Sciences. The experiment at the Elettra synchrotron was performed within project No. 20150303. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.
Theoretical and experimental study of CaWO4 and SrWO4 under pressure
Abstract In this paper, we combine a theoretical study of the structural phases of CaWO 4 and SrWO 4 under high pressure along with the results of angle-dispersive X-ray diffraction (ADXRD) and X-ray absorption near-edge structure (XANES) measurements of both tungstates up to approximately 20 GPa. The theoretical study was performed within the ab initio framework of the density functional theory (DFT) using a plane-wave basis set and the pseudopotential scheme, with the generalized gradient approximation (GGA) for the exchange and correlation contribution to the energy. Under normal conditions, CaWO 4 and SrWO 4 crystallize in the scheelite structure. Our results show that in a hydrostatic …
Determination of the high-pressure crystal structure ofBaWO4andPbWO4
We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in $\mathrm{Ba}\mathrm{W}{\mathrm{O}}_{4}$ and $\mathrm{Pb}\mathrm{W}{\mathrm{O}}_{4}$ at pressures of up to $56\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ and $24\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, respectively. $\mathrm{Ba}\mathrm{W}{\mathrm{O}}_{4}$ is found to undergo a pressure-driven phase transition at $7.1\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in $\mathrm{Pb}\mathrm{W}{\mathrm{O}}_{4}$ at $9\phantom{\rule{0…
High-temperature X-ray absorption spectroscopy study of thermochromic copper molybdate
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/5 and SJZ/2018/1 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. The work was also supported by philanthropist MikroTik and administrated by the University of Latvia Foundation . The experiment at the Elettra synchrotron was performed within the project No. 20150303 .
High-pressure structural study of the scheelite tungstatesCaWO4andSrWO4
Angle-dispersive x-ray-diffraction and x-ray-absorption near-edge structure measurements have been performed on ${\mathrm{CaWO}}_{4}$ and ${\mathrm{SrWO}}_{4}$ up to pressures of approximately 20 GPa. Both materials display similar behavior in the range of pressures investigated in our experiments. As in the previously reported case of ${\mathrm{CaWO}}_{4}$, under hydrostatic conditions ${\mathrm{SrWO}}_{4}$ undergoes a pressure-induced scheelite-to-fergusonite transition around 10 GPa. Our experimental results are compared to those found in the literature and are further supported by ab initio total-energy calculations, from which we also predict the instability at larger pressures of the …