0000000000146350

AUTHOR

Philippe Lalanne

showing 6 related works from this author

Formation and properties of localized modes near photonic band edges

2015

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Nano-manipulation of confined electromagnetic fields with a near-field probe

2008

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.MAT] Engineering Sciences [physics]/Materials[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS
researchProduct

Influence of the filling factor on the spectral properties of plasmonic crystals

2006

Plasmonics crystals (PCs) comprised of finite-size triangular lattices of gold bumps deposited on a gold thin film are studied by means of a near-field optical microscope. The plasmonic crystals fabricated by electron-beam lithography are illuminated by an incident surface plasmon polariton excited in the Kretschmann-Raether configuration at the gold/air thin-film interface for incident free-space wavelengths in the range $740--820\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$. Based on the measurement of the surface plasmon polariton (SPP) damping distance in the crystals, the existence of a band gap for an incident SPP traveling along the two symmetry axes $\ensuremath{\Gamma}M$ and $\ensuremath…

Band gapPhysics::Optics02 engineering and technology01 natural sciencesMolecular physicsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesAbsorption (logic)[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPlasmon[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Physics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Filling factorbusiness.industryScattering021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurface plasmon polaritonElectronic Optical and Magnetic MaterialsWavelengthReflection (mathematics)[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusiness
researchProduct

A near-field actuated optical nanocavity

2008

International audience; We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Optics and PhotonicsMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicTransducersPhysics::OpticsNear and far field02 engineering and technology01 natural sciences010309 opticsLaser linewidthOpticsAtomic and Molecular Physics0103 physical sciencesNanotechnologyOptical path lengthComputingMilieux_MISCELLANEOUSRange (particle radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNear-field opticsPhotonic integrated circuitResonanceEquipment Design021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure AnalysisTransducer[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonicand Optics0210 nano-technologybusiness
researchProduct

Near-field spectroscopy of low-loss waveguide integrated microcavities

2006

International audience; A scanning near-field spectroscopy method is used to observe loss reduction and Q-factor enhancement due to transverse-mode profile matching within photonic-crystal microcavities. Near-field measurements performed directly on cavity modes are compared with three-dimensional calculations and quantitative agreement is observed. (c) 2006 American Institute of Physics.

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Materials sciencePhysics and Astronomy (miscellaneous)business.industryPhotonic integrated circuitPhysics::OpticsNear and far field01 natural sciencesWaveguide (optics)010309 opticsOptics[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Q factor0103 physical sciencesOptoelectronicsNear-field scanning optical microscope010306 general physicsbusinessSpectroscopyMicrophotonicsPhotonic crystalApplied Physics Letters
researchProduct

Modelling leaky photonic wires: a mode solver comparison

2006

We present results from a mode solver comparison held within the framework of the European COST P11 project. The structure modelled is a high-index contrast photonic wire in silicon-oninsulator subject to substrate leakage. The methods compared are both in-house developed and commercial, and range from effective index and perturbation methods, over finite-element and finite-difference codes, beam propagation methods, to film mode matching methods and plane wave expansion methods.

Plane waveSubstrate leakageno keywordsIR-67031METIS-248208OpticsBeam propagation methodBoundary value problemElectrical and Electronic EngineeringOptical mode solvers Photonic wires Substrate leakage WaveguidesLeakage (electronics)Physicsbusiness.industryOptical mode solversSolverPhotonic wiresIOMS-PCS: PHOTONIC CRYSTAL STRUCTURESAtomic and Molecular Physics and OpticsFinite element methodElectronic Optical and Magnetic MaterialsEWI-9572IOMS-SNS: SENSORSPlane wave expansionPhotonicsbusinessWaveguides
researchProduct