0000000000146803

AUTHOR

Roman Boča

Spin crossover in iron(II) tris(2-(2′-pyridyl)benzimidazole) complex monitored by variable temperature methods: synchrotron powder diffraction, DSC, IR spectra, Mössbauer spectra, and magnetic susceptibility

Abstract The thermal expansion of the spin crossover system [Fe(pybzim) 3 ](ClO 4 ) 2  · H 2 O (pybzim=2-(2 ′ -pyridyl)benzimidazole) has been determined from powder X-ray data between 50 and 250 K; the wavelength of the synchrotron source was 1.21888(1) A. The unit cell parameters of the triclinic crystal system were a =12.091 A, b =12.225 A, c =14.083 A, α =77.70°, β =80.35°, γ =74.35°, and V =1944.9 A 3 at 250 K. In addition to the linear thermal expansion of the unit cell volume, an extra expansion due to the low-spin (LS) to high-spin (HS) transition is observed. The V ( T ) function shows a sudden increase comparable with the step in the effective magnetic moment at the transition reg…

research product

Spin crossover in a tetranuclear Cr(III)-Fe(III)3 complex

A novel heteronuclear exchange-coupled complex [Cr I I I {(CN)Fe I I I -( 5 L)} 3 (CN) 3 ] containing a pentadentate blocking ligand 5 L was synthesized. The X-ray structure shows that a meridional isomer applies with inequivalent Fe I I I centers. The complex exhibits a thermally induced spin crossover along with the exchange coupling. Mossbauer spectra indicate a spin transition between S = ½ and S = 5/2 states although a considerable amount of Fe I I I centers stays high-spin at T = 6 K. The magnetization, the magnetic susceptibility, and the Mossbauer data were fitted in one run with a spin crossover model taking into account exchange interactions among all metal centers.

research product

Tuning the spin crossover above room temperature: iron(II) complexes of substituted and deprotonated 2,6-bis(benzimidazol-2-yl)pyridine

Abstract The complex [Fe(tzimpy)2](ClO4)2 · 2H2O (tzimpy = 2,4,6-tris-(benzimidazol-2-yl)pyridine) shows an abrupt spin crossover (S = 0–2 transition) above room temperature centered at Tc = 323 K with a hysteresis width of ΔT = 35 K. The neutral iron(II) complex with deprotonated bzimpy ligands (bzimpy = 2,6-bis(benzimidazol-2-yl)pyridine) exhibits a gradual spin transition on the first heating with Tc = 424 K. There are irreversible changes between T = 503 and 523 K: the liberation of the crystal water, the color change (blue–green) followed by a structure change. Next thermal cycles are reproducible though, heating/cooling paths are different from the first heating.

research product

Spin crossover in mononuclear and binuclear iron(III) complexes with pentadentate Schiff-base ligands

Abstract A series of mononuclear hexacoordinate iron(III) complexes, [Fe( 5 L )(py)]BPh 4 , and binuclear hexacoordinate iron(III) complexes, [( 5 L )Fe(μ 2 -bpy)Fe( 5 L )](BPh 4 ) 2 , has been prepared and their magnetic properties were investigated; the pentadentate ligands were derivatives of 5 L =saldptn=N,N′-bis(2-hydroxybenzyliden)-1,7-diamino-4-azaheptane. Temperature variation of the effective magnetic moment for them shows that a spin transition from the low-spin to the high-spin state occurs. The magnetic data were fitted to an Ising-like model appropriate for the mono- and binuclear systems.

research product

Iron(III) Complexes on a Dendrimeric Basis and Various Amine Core Investigated by Mössbauer Spectroscopy

Dendrimers of various generations were synthesized by the divergent method. Starting from various amine cores (G0a, G0b, G0c) the generations were built by reaction of the amine with acrylnitrile followed by hydrogenation with DIBAL-H. Treatment with salicylaldehyde creates a fivefold coordination sphere for iron in the molecular periphery. The resulting multinuclear coordination compounds are investigated by Mossbauer spectroscopy.

research product

Structural and magnetic studies of tetranuclear heterometallic M/Cr (M = Co, Mn) complexes self-assembled from zerovalent cobalt or manganese, Reineckes salt and diethanolamine

Abstract Four novel heterometallic complexes [Co2Cr2(NCS)4(HDea)2(Dea)2]·4dmf (1), [Co2Cr2(NCS)4(HDea)2(Dea)2]·4dmso (2), [Mn2Cr2(NCS)4(HDea)2(Dea)2(dmf)2]·2dmf (3) and [Mn2Cr2(NCS)4(HDea)2(Dea)2(dmso)2]·4dmso (4) have been prepared using zerovalent cobalt (1, 2) or manganese (3, 4), Reineckes salt, ammonium thiocyanate and a non-aqueous solution of diethanolamine (H2Dea) in air. The single X-ray analysis reveals that all compounds have similar centrosymmetric crystal structures based on a tetranuclear {M2Cr2(μ3-O)2(μ-O)4} (M = Co, Mn) core. Variable-temperature magnetic susceptibility measurements of 1, 2 and 4 show antiferromagnetic coupling between the magnetic centers, while 3 exhibits …

research product

A heptanuclear Fe(II)–Fe(III)6 system with twelve unpaired electrons

Abstract The pentadentate ligand 5 LH2 = saldptn = N,N′-bis(1-hydroxy-2-benzyliden)-1,7-diamino-4-azaheptane has been prepared by a Schiff base condensation between 1,7-diamino-4-azaheptane and the corresponding salicyaldehyde. Its complexation with Fe(III) gave the high-spin (S=5/2) complex of [Fe III ( 5 L)Cl]. This precursor was combined with [Fe(CN)6]4− and a blue heptanuclear complex [FeII{(CN)Fe III ( 5 L)}6]Cl2 resulted. This system belongs to the class of high-spin molecules possessing twelve unpaired electrons (S=6) as proven by the magnetic susceptibility measurements and Mossbauer spectra.

research product