0000000000147365

AUTHOR

Igor Burban

showing 3 related works from this author

Derived categories of irreducible projective curves of arithmetic genus one

2006

We investigate the bounded derived category of coherent sheaves on irreducible singular projective curves of arithmetic genus one. A description of the group of exact auto-equivalences and the set of all $t$ -structures of this category is given. We describe the moduli space of stability conditions, obtain a complete classification of all spherical objects in this category and show that the group of exact auto-equivalences acts transitively on them. Harder–Narasimhan filtrations in the sense of Bridgeland are used as our main technical tool.

Discrete mathematicsDerived categoryPure mathematicsAlgebra and Number TheoryFourier–Mukai transformGroup (mathematics)Moduli spaceCoherent sheafMathematics::Algebraic GeometryMathematics::Category TheoryBounded functionArithmetic genusAlgebraic curveMathematicsCompositio Mathematica
researchProduct

Vector Bundles and Torsion Free Sheaves on Degenerations of Elliptic Curves

2006

In this paper we give a survey about the classification of vector bundles and torsion free sheaves on degenerations of elliptic curves. Coherent sheaves on singular curves of arithmetic genus one can be studied using the technique of matrix problems or via Fourier-Mukai transforms, both methods are discussed here. Moreover, we include new proofs of some classical results about vector bundles on elliptic curves.

AlgebraPure mathematicsElliptic curveMathematics::Algebraic GeometryLine bundleTorsion (algebra)Vector bundleSchoof's algorithmTwists of curvesSupersingular elliptic curveMathematicsCoherent sheaf
researchProduct

Cluster tilting for one-dimensional hypersurface singularities

2008

In this article we study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects and their complete description by homological methods, using higher almost split sequences and results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite dimensional symmetric and satisfy $\tau^2=\id$. In particular, we compute 2-CY tilted algebras for simple and minimally elliptic curve singularities.

Pure mathematicsMathematics(all)General MathematicsMathematical analysisTilting theoryBirational geometryRepresentation theoryMathematics - Algebraic GeometryElliptic curveHypersurfaceSimple (abstract algebra)FOS: MathematicsGravitational singularityRepresentation Theory (math.RT)Algebraic Geometry (math.AG)Mathematics - Representation TheoryAssociative propertyMathematicsAdvances in Mathematics
researchProduct