0000000000147779

AUTHOR

M. Deushi

showing 1 related works from this author

A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1

2020

The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (τCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of τCH4 differences among 10 models are the flux of UV li…

Atmospheric ScienceAtmospheric chemistry010504 meteorology & atmospheric sciencesneural networkAnalytical chemistry010501 environmental sciences01 natural sciencesTropospherelcsh:Chemistrychemistry.chemical_compoundMESSyErdsystem-ModellierungMixing ratioTropospheric ozoneIsopreneNOx0105 earth and related environmental sciencesEMAChydroxyl radicalPhotodissociationlcsh:QC1-999Atmospheric chemistry neural networkmachine learningchemistrylcsh:QD1-99913. Climate actionCCMI[SDE]Environmental SciencesHydroxyl radicalWater vaporlcsh:Physicsmethane lifetime
researchProduct