0000000000147903

AUTHOR

Fredrik Gustafsson

showing 7 related works from this author

Resonance ionization schemes for high resolution and high efficiency studies of exotic nuclei at the CRIS experiment

2019

© 2019 This paper presents an overview of recent resonance ionization schemes used at the Collinear Resonance Ionization Spectroscopy (CRIS) setup located at ISOLDE, CERN. The developments needed to reach high spectral resolution and efficiency will be discussed. Besides laser ionization efficiency and high resolving power, experiments on rare isotopes also require low-background conditions. Ongoing developments that aim to deal with beam-related sources of background are presented. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:398-402 ispartof: location:SWITZERLAND, CERN, Geneva status: published

Nuclear and High Energy PhysicsHigh resolution7. Clean energy01 natural sciencesResonance ionization spectroscopylaw.inventionNuclear physicslawIonization0103 physical sciencesDalton Nuclear InstituteNuclear structurePhysics::Atomic PhysicsSpectral resolution010306 general physicsSpectroscopyInstrumentationPhysicsLarge Hadron Collider010308 nuclear & particles physicsDelayed ionizationNuclear structureLaser3. Good healthResearchInstitutes_Networks_Beacons/dalton_nuclear_instituteResonance ionizationHigh-resolution laser spectroscopyNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

A compact linear Paul trap cooler buncher for CRIS

2020

A gas-filled linear Paul trap for the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at ISOLDE, CERN is currently under development. The trap is designed to accept beam from both ISOLDE target stations and the CRIS stable ion source. The motivation for the project along with the current design, simulations and future plans, will be outlined. peerReviewed

Nuclear and High Energy Physicsspektroskopiatutkimuslaitteet7. Clean energy01 natural sciencesTrap (computing)Nuclear physics0103 physical sciences3D-tulostusDalton Nuclear InstituteNuclear Experiment010306 general physicsInstrumentationPhysicsLarge Hadron Collider010401 analytical chemistryion trapping3D printingIon source0104 chemical sciencesResearchInstitutes_Networks_Beacons/dalton_nuclear_institutelaser spectroscopyPhysics::Accelerator PhysicsIon trapydinfysiikkaBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Tin resonance-ionization schemes for atomic- And nuclear-structure studies

2020

This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…

spektroskopiachemistry.chemical_elementPhysics Atomic Molecular & Chemical7. Clean energy01 natural sciences010305 fluids & plasmasatomifysiikkaAtomic theory0103 physical sciencesIsotopes of tinNuclear Physics - ExperimentPhysics::Atomic Physics010306 general physicsSpectroscopyHyperfine structurePhysicsisotoopitScience & TechnologyPhysicsNuclear structureCharge (physics)OpticsConfiguration interactionchemistryPhysical SciencestinaAtomic physicsTinPhysical Review A
researchProduct

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

2020

Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…

kaliumNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-thAtomic Physics (physics.atom-ph)Nuclear TheoryOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex114 Physical sciencesphysics.atom-ph01 natural sciencesEffective nuclear chargePhysics - Atomic PhysicsNuclear Theory (nucl-th)Nuclear physicsCharge radius0103 physical sciencesNuclear Physics - ExperimentNeutronNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentPhysicsisotoopit010308 nuclear & particles physicsCharge (physics)Nuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Coupled clusterIsotopes of potassiumNuclear Physics - TheoryydinfysiikkaNuclear densityNature Physics
researchProduct

Spectroscopy of short-lived radioactive molecules

2020

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…

spektroskopiacollinearnucl-ex01 natural sciences010305 fluids & plasmasRadiumchemistry.chemical_compoundIonizationExperimental nuclear physicsNuclear ExperimentPhysicsMultidisciplinaryLarge Hadron ColliderStable isotope rationew physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thmolekyylithep-phradiumelectron: electric momentNuclear Physics - Theoryradioactivitymany-body problemElectronic structure of atoms and moleculesAtomic physicsydinfysiikkaParticle Physics - Theoryexceptionalnucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]MonofluorideResearchInstitutes_Networks_Beacons/photon_science_institutechemistry.chemical_elementnucleus: structure functionElectronic structure[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Photon Science InstituteArticle0103 physical sciencesionizationMoleculeNuclear Physics - Experiment010306 general physicsSpectroscopyenhancementParticle Physics - Phenomenologystabilitysensitivitylaserchemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Exotic atoms and moleculesnucleus: deformation
researchProduct

Isotope Shifts of Radium Monofluoride Molecules

2021

Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]FIELD SHIFTNuclear TheoryAtomic Physics (physics.atom-ph)Ab initioGeneral Physics and AstronomyNUCLEAR-STRUCTUREnucl-ex01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasENERGYchemistry.chemical_compoundatomifysiikkaMOMENTSPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsIsotopePhysicsNuclear structureradiumNuclear Physics - TheoryPhysical SciencesAtomic physicsydinfysiikkanucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Monofluoride[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics MultidisciplinaryOther Fields of PhysicsFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]physics.atom-phMolecular electronic transitionELECTRONIC-STRUCTURE CALCULATIONSNuclear Theory (nucl-th)ATOMS0103 physical sciencesMoleculeSPECTRANuclear Physics - ExperimentSensitivity (control systems)010306 general physicsisotoopitScience & Technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]chemistryMECHANICSMASS DEPENDENCELASERElectronic density
researchProduct

Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments

2017

The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work. (C) 2017 Author(s). Funding Agencies|Knut and Alice Wallenberg Foundation; ERC [226136]; Finnish Funding Agency for Technology and Innovation TEKES; Academy of Finland [260880]; NIST Innovations in Measurement Science program; DOE Office of Basic Energy Sciences

Atom and Molecular Physics and OpticsPhysics::OpticsNanotechnology02 engineering and technology01 natural sciencesThermal detectorOpticsDarwin-Bragg loss0103 physical scienceslcsh:QD901-999010306 general physicsInstrumentationSpectroscopyPhysicsRadiationbusiness.industryArticleskidetiede021001 nanoscience & nanotechnologyCondensed Matter Physicsultrafast x-raysUltrafast Structural Dynamics—A Tribute to Ahmed H. ZewailDarwin (spacecraft)Atom- och molekylfysik och optiklcsh:Crystallography0210 nano-technologybusinessUltrashort pulseStructural Dynamics
researchProduct