0000000000148692

AUTHOR

Daniel White

showing 1 related works from this author

Spin-layer locking of interlayer excitons trapped in moir\'e potentials

2019

Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index, and layer index. Further, twisted TMD heterobilayers can form moir\'e patterns that modulate the electronic band structure according to atomic registry, leading to spatial confinement of interlayer exciton (IXs). Here we report the observation of spin-layer locking of IXs trapped in moir\'e potentials formed in a heterostructure of bilayer 2H-MoSe$_2$ and monolayer WSe$_2$. The phenomenon of locked electron spin and layer index leads to two quantum-confined IX species with distinct spin-…

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringBilayerExcitonStackingHeterojunction02 engineering and technologyGeneral Chemistry16. Peace & justice010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences0104 chemical sciencesMechanics of MaterialsMonolayerGeneral Materials Science0210 nano-technologySpin (physics)Electronic band structureQuantum
researchProduct