Environment-sensitivity functions for gross primary productivity in light use efficiency models
International audience; The sensitivity of photosynthesis to environmental changes is essential for understanding carbon cycle responses to global climate change and for the development of modeling approaches that explains its spatial and temporal variability. We collected a large variety of published sensitivity functions of gross primary productivity (GPP) to different forcing variables to assess the response of GPP to environmental factors. These include the responses of GPP to temperature; vapor pressure deficit, some of which include the response to atmospheric CO2 concentrations; soil water availability (W); light intensity; and cloudiness. These functions were combined in a full fact…
Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability
Interannual variations in ecosystem primary productivity are dominated by water availability. Until recently, characterizing the photosynthetic response of different ecosystems to soil moisture anomalies was hampered by observational limitations. Here, we use a number of satellite-based proxies for productivity, including spectral indices, sun-induced chlorophyll fluorescence, and data-driven estimates of gross primary production, to reevaluate the relationship between terrestrial photosynthesis and water. In contrast to nonwoody vegetation, we find a resilience of forested ecosystems to reduced soil moisture. Sun-induced chlorophyll fluorescence and data-driven gross primary production ind…
A unified vegetation index for quantifying the terrestrial biosphere
[EN] Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross prim…