0000000000149498

AUTHOR

Aurélie Bourchany

showing 5 related works from this author

Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome

2015

Mowat-Wilson syndrome (MWS) is a rare genetic syndrome characterized by a specific facial gestalt, intellectual deficiency, Hirschsprung disease and multiple congenital anomalies. Heterozygous mutations or deletions in the zinc finger E-box-binding homeobox2 gene (ZEB2) cause MWS. ZEB2 encodes for Smad-interacting protein 1, a transcriptional co-repressor involved in TGF-beta and BMP pathways and is strongly expressed in early stages of development in mice. Eye abnormalities have rarely been described in patients with this syndrome. Herein, we describe four patients (two males and two females; mean age 7 years) with MWS and eye malformations. Ocular anomalies included, iris/retinal coloboma…

Malemedicine.medical_specialtyAdolescentgenetic structuresMowat–Wilson syndromeRetinal Pigment EpitheliumBiologyEyeCataractchemistry.chemical_compoundAtrophyIntellectual DisabilityOphthalmologyGeneticsmedicineHumansHirschsprung Disease[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory OrgansIris (anatomy)HyphemaGenetics (clinical)Zinc Finger E-box Binding Homeobox 2Homeodomain ProteinsRetinaFaciesOptic NerveRetinalAnatomymedicine.diseaseeye diseasesColobomaRepressor Proteinsmedicine.anatomical_structurechemistryChild PreschoolLens (anatomy)MutationMicrocephalyOptic nerveFemalesense organsAtrophy[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyAmerican Journal of Medical Genetics Part A
researchProduct

Mutations in theERCC2(XPD) gene associated with severe fetal ichthyosis and dysmorphic features

2016

0301 basic medicineGeneticsFetusbusiness.industryIchthyosisObstetrics and Gynecology030105 genetics & hereditymedicine.disease03 medical and health sciencesText miningMedicineERCC2businessGeneGenetics (clinical)Prenatal Diagnosis
researchProduct

Loss-of-Function Mutations in UNC45A Cause a Syndrome Associating Cholestasis, Diarrhea, Impaired Hearing, and Bone Fragility

2018

International audience; Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut dev…

0301 basic medicineDiarrheaMaleCandidate geneAdolescentBone fragilityArticleBone and Bones03 medical and health sciencesYoung AdultCholestasisLoss of Function MutationGCUNC-45MyosinGeneticsMedicineAnimalsHumansFamilyLymphocytes[ SDV.GEN.GH ] Life Sciences [q-bio]/Genetics/Human geneticsHearing LossGeneGenetics (clinical)Loss functionZebrafishCholestasisbusiness.industryInfant NewbornIntracellular Signaling Peptides and ProteinsSyndromeFibroblastsmedicine.disease3. Good healthPedigreeDiarrhea030104 developmental biologyPhenotype[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsConcomitantChild PreschoolImmunologyFemalemedicine.symptombusinessGastrointestinal Motility
researchProduct

Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses

2017

IF 2.137; International audience; BACKGROUND AND OBJECTIVE:Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to impr…

0301 basic medicineAdultMaleExome sequencingmedicine.medical_specialtyTime FactorsAdolescentGenetic counselingBioinformaticsTurnaround timeSensitivity and SpecificityUndiagnosed genetic conditions03 medical and health sciencesGeneticsmedicineHumansExomeGenetic TestingMedical diagnosisIntensive care medicineChildExomeGenetics (clinical)Exome sequencingGenetic testingWhole genome sequencing[SDV.GEN]Life Sciences [q-bio]/Geneticsmedicine.diagnostic_testbusiness.industryInfant NewbornInfantGeneral MedicineSequence Analysis DNADiagnostic turnaround time3. Good healthClinical trial030104 developmental biologyEarly DiagnosisChild PreschoolFemalebusiness[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct

Osteo-Oto-Hepato-Enteric Syndrome (O2HE) is caused by loss of function mutations in UNC45A

2017

AbstractDespite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with hitherto unknown syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing and bone fragility, a clinical entity we have termed O2HE (Osteo-Oto-Hepato-enteric) syndrome. Whole exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A), as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss of function paradigm, wherein mutations …

Candidate geneCholestasisIn vivoConcomitantMyosinImmunologymedicineCancer researchBiologymedicine.diseaseGeneLoss functionExome sequencing
researchProduct