0000000000149697

AUTHOR

Filippo Galeazzi

showing 10 related works from this author

Beyond second-order convergence in simulations of binary neutron stars in full general relativity

2014

Despite the recent rapid progress in numerical relativity, a convergence order less than the second has so far plagued codes solving the Einstein-Euler system of equations. We report simulations of the inspiral of binary neutron stars in quasi-circular orbits computed with a new code employing high-order, high-resolution shock-capturing, finite-differencing schemes that, for the first time, go beyond the second-order barrier. In particular, without any tuning or alignment, we measure a convergence order above three both in the phase and in the amplitude of the gravitational waves. Because the new code is able to calculate waveforms with very small phase errors already at modest resolutions,…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGeneral relativityGravitational waveFOS: Physical sciencesBinary numberAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsSystem of linear equationsGeneral Relativity and Quantum CosmologyNeutron starNumerical relativityAmplitudeSpace and Planetary ScienceConvergence (routing)Astrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society: Letters
researchProduct

General Relativistic Simulations of Accretion Disks Around Tilted Kerr Black Holes

2014

We simulate the dynamics of self-gravitating accretion disks around tilted Kerr black holes (BH) in full 3D general relativity. For this purpose we employ the EinsteinToolkit, using the thorn McLachlan for the evolution of the spacetime via the BSSN formalism of the Einstein equations and the thorn GRHydro for the evolution of the hydrodynamics, using a 3D Cartesian mesh with adaptive mesh refinement. We investigate the effects of the tilt angle between the disk angular momentum and BH spin vector on the dynamics of these systems as the disk evolves in the tilted spacetime. By evolving the spacetime and matter fields, we are able to observe how both BH and disk react and evolve in the tilte…

PhysicsBlack holeGeneral Relativity and Quantum CosmologyAngular momentumClassical mechanicsRotating black holeSpacetimeGeneral relativityAdaptive mesh refinementApparent horizonAstrophysics::Earth and Planetary AstrophysicsAstrophysicsSpecific relative angular momentum
researchProduct

Rotational properties of hypermassive neutron stars from binary mergers

2016

Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and hence on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest de…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Equation of state010308 nuclear & particles physicsGeneral relativityYoung stellar objectBinary numberFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyNeutron starSupernovaStarsDistribution (mathematics)0103 physical sciencesAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysical Review D
researchProduct

Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

2015

In this work we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr BH. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unst…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaWhite holeFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Charged black hole01 natural sciencesGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyRotating black holeBinary black hole0103 physical sciencesExtremal black holeStellar black holeSpin-flipAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

On the dynamics of tilted black hole-torus systems

2016

We present results from three-dimensional, numerical relativity simulations of a {\it tilted} black hole-thick accretion disc system. The simulations are analysed using tracer particles in the disc which are advected with the flow. Such tracers, which we employ in these new simulations for the first time, provide a powerful means to analyse in detail the complex dynamics of tilted black hole-torus systems. We show how its use helps to gain insight in the overall dynamics of the system, discussing the origin of the observed black hole precession and the development of a global non-axisymmetric $m=1$ mode in the disc. Our three-dimensional simulations show the presence of quasi-periodic oscil…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsTorusGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyAccretion (astrophysics)Black starNumerical relativityNeutron starComplex dynamicsSpace and Planetary Science0103 physical sciencesStellar black holeAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysics
researchProduct

Implementation of a simplified approach to radiative transfer in general relativity

2013

We describe in detail the implementation of a simplified approach to radiative transfer in general relativity by means of the well-known neutrino leakage scheme (NLS). In particular, we carry out an extensive investigation of the properties and limitations of the NLS for isolated relativistic stars to a level of detail that has not been discussed before in a general-relativistic context. Although the numerous tests considered here are rather idealized, they provide a well-controlled environment in which to understand the relationship between the matter dynamics and the neutrino emission, which is important in order to model the neutrino signals from more complicated scenarios, such as binar…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesPerturbation (astronomy)General Relativity and Quantum Cosmology (gr-qc)MechanicsGeneral Relativity and Quantum CosmologyNeutron starNumerical relativityStarsClassical mechanicsGravitational collapseRadiative transferNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

High-Order Fully General-Relativistic Hydrodynamics: new Approaches and Tests

2014

We present a new approach for achieving high-order convergence in fully general-relativistic hydrodynamic simulations. The approach is implemented in WhiskyTHC, a new code that makes use of state-of-the-art numerical schemes and was key in achieving, for the first time, higher than second-order convergence in the calculation of the gravitational radiation from inspiraling binary neutron stars Radice et al. (2013). Here, we give a detailed description of the algorithms employed and present results obtained for a series of classical tests involving isolated neutron stars. In addition, using the gravitational-wave emission from the late inspiral and merger of binary neutron stars, we make a de…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics and Astronomy (miscellaneous)Gravitational waveGeneral relativityBinary numberFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyAstronGravitationNumerical relativityNeutron starTheory of relativityStatistical physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

On the black hole from merging binary neutron stars: how fast can it spin?

2013

The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping CCZ4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formul…

PhysicsNuclear and High Energy PhysicsAngular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyRotating black holeBinary black holeTotal angular momentum quantum numberQuantum mechanicsExtremal black holeStellar black holeSpin-flip
researchProduct

The role of the ergosphere in the Blandford-Znajek process

2012

The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.

Electromagnetic fieldPhysicsGeneral Relativity and Quantum CosmologyStarsRotating black holeAstrophysical jetSpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaQuantum electrodynamicsBlandford–Znajek processAstronomy and AstrophysicsErgosphereMagnetic fieldMonthly Notices of the Royal Astronomical Society
researchProduct

The role of the ergosphere in the Blandford-Znajek process

2012

The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.

General Relativity and Quantum CosmologyAstrophysics::High Energy Astrophysical PhenomenaAstronomiaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmology
researchProduct