0000000000153472
AUTHOR
Roberto Chierici
All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems
Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…
Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…
GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙
LIGO Scientific Collaboration and Virgo Collaboration: et al.
Masses, lifetimes and production rates of Ξ− and Ξ¯+ at LEP 1
Measurements of the Xi(-) and (Xi) over bar (+) masses, mass differences, lifetimes and lifetime differences are presented. The (Xi) over bar (+) sample used is much larger than those used previously for such measurements. In addition, the S production rates in Z -> b (b) over bar and Z -> q (q) over bar events are compared and the position xi* of the maximum of the distribution in Z -> q (q) over bar events is measured.
Measurement of the Λb0 decay form factor
The form factor of Λb0 baryons is estimated using 3.46×106 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Λc+ baryons fully reconstructed in the pK-π+, pK S0, and Λπ+π+π - modes, are associated to a lepton with opposite charge in order to select Λb0→Λc+l-ν̄l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be ρ̂2=2.03±0.46(stat) -1.00+0.72(syst). The exclusive semileptonic branching fraction Br(Λb0→Λc+l-ν̄l) can be derived from ρ̂2 and is found to be (5.0-0.8+1.1(stat)-1.2+1.6(syst))%. Limits on ot…
Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II
A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…
A measurement of the branching fractions of the b quark into charged and neutral b hadrons
The production fractions of charged and neutral b-hadrons in b-quark events from Z0 decays have been measured with the DELPHI detector at LEP. An algorithm has been developed, based on a neural network, to estimate the charge of the weakly-decaying b-hadron by distinguishing its decay products from particles produced at the primary vertex. From the data taken in the years 1994 and 1995, the fraction of bbar-quarks fragmenting into positively charged weakly-decaying b-hadrons has been measured to be: f^+ = (42.09 +/- 0.82 (stat.) +/- 0.89 (syst.))%. Subtracting the rates for charged Xibar_b^+ and Omegabar_b^+ baryons gives the production fraction of B^+ mesons: f_Bu = (40.99 +/- 0.82 (stat.)…
Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars
We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…
Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.
Search for $B^0_s-\overline{B^0_s}$ oscillations and a measurement of $B^0_d-\overline{B^0_d}$ oscillations using events with an inclusively reconstructed vertex
Neutral B meson oscillations in the B-s(0) - , and B-d(0) - systems were studied using a sample of about 4.0 million hadronic Z decays recorded by the DELPHI detector between 1992 and 2000. Events with a high transverse momentum lepton were removed and a sample of 770 k events with an inclusively reconstructed vertex was selected. The mass difference between the two physical states in the B-d(0) - system was measured to be: Deltam(d) = (0.531 +/- 0.025(stat.) +/- 0.007(syst.))ps(-1). The following limit on the width difference of these states was also obtained: DeltaGamma(Bd)/Gamma(Bd) oscillations was found, a limit on the mass difference of the two physical states was given:, Deltam(s) > …