0000000000154135
AUTHOR
Yasutake Ohishi
Visible Light Generation and its Influence on Supercontinuum in Chalcogenide As2S3 Microstructured Optical Fiber
We demonstrate visible light generation in chalcogenide As2S3 microstructured optical fiber. The generated visible light causes irreversible damage to the fiber core because of the high absorption coefficient of chalcogenide glasses in the visible band. The SCs (supercontinua) are measured in both untapered and tapered As2S3 fibers, no wider SC is obtained in the tapered one. The SC growth is prevented by the visible light generation since the damage to the fiber core decreases the fiber transmission substantially. This effect can be avoided by designing the fiber to enable the pump source to work in single-mode operation.
Recent developments in chalcogenide photonic crystal fibres
Elaboration of low-losses highly non linear chalcogenide optical fibers for the generation of efficient non linear effects in the infrared remains a challenge. In recent years, much work has been devoted to the study of microstructured optical fibers (MOFs) with different designs and various elaboration processes. Their background losses were typically of several dB/m.
Visible Light Generation and Its Influence to Supercontinuum in As2S3 Microstructured Fiber
We demonstrate visible light generation in As 2 S 3 microstructured fiber for the first time. It limits the spectral range of supercontinuum. The visible light generation can be avoided by designing the fiber for the single-mode operation.
3.5-μm bandwidth mid-infrared supercontinuum generation in a 2-cm long suspended-core chalcogenide fiber
A supercontinuum source extending from 0.6 to 4.1 µm has been successfully generated in a 2-cm long As2S3 chalcogenide suspended-core fiber by means of a nJ-level 200-fs pumping at 2.5 µm.
Enhanced supercontinuum generation in tapered tellurite suspended core fiber
Abstract We demonstrate 400-THz (0.6–3.3 µm) bandwidth infrared supercontinuum generation in a 10 cm-long tapered tellurite suspended core fiber pumped by nJ-level 200-fs pulses from an optical parametric oscillator. The increased nonlinearity and dispersion engineering extended by the moderate reduction of the fiber core size are exploited for supercontinuum optimization on both frequency edges (i.e., 155-THz overall gain), while keeping efficient power coupling into the untapered fiber input. The remaining limitation of supercontinuum bandwidth is related to the presence of the high absorption beyond 3 µm whereas spectral broadening is expected to fully cover the glass transmission window…
Mid-infrared supercontinuum generation in suspended-core Chalcogenide and Tellurite optical fibers
We report the experimental generation of mid-infrared supercontinuum in tellurite and chalcogenide suspended-core fibers pumped close to their zero-dispersion in femtosecond regime. The resulting supercontinua extend until 2.8µm in tellurite and 3.2µm in chalcogenide fibers.
Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass
Abstract Filamentation of infrared femtosecond pulses in Tellurite glass is reported, leading to the generation of a supercontinuum generation spanning from the visible up to 4 μm. The angular distribution of the supercontinuum shows clear evidence of conical waves generation, in particular, in the visible region. Moreover, taking advantage of the spatio-temporal self-focusing effect occurring in the Tellurite glass, a twofold pulse shortening is demonstrated. Tellurite glass appears as a very convenient, versatile and promising medium for femtosecond nonlinear optics in the infrared region.
Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers
An As2S3 fiber-based supercontinuum source that covers 3500 nm, extending from near visible to the midinfrared, is successfully reported by using a 200-fs-pulsed pump with nJ-level energy at 2.5 μm. The main features of our fiber-based source are two-fold. On the one hand, a low-loss As2S3 microstructured optical fiber has been fabricated, with typical attenuation below 2 dB/m in the 1-4 μm wavelength range. On the other hand, a 20-mm-long microstructured fiber sample is sufficient to enable a spectral broadening, spreading from 0.6 to 4.1 μm in a 40 dB dynamic range.
Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers
International audience; In this work, we report the experimental observation of supercontinua generation in two kinds of suspended-core microstructured soft-glass optical fibers. Low loss, highly nonlinear, tellurite and As2S3 chalcogenide fibers have been fabricated and pumped close to their zero-dispersion wavelength in the femtosecond regime by means of an optical parametric oscillator pumped by a Ti:Sapphire laser. When coupled into the fibers, the femtosecond pulses result in 2000-nm bandwidth supercontinua reaching the Mid-Infrared region and extending from 750 nm to 2.8 mu m in tellurite fibers and 1 mu m to 3.2 mu m in chalcogenide fibers, respectively.
Mid-infrared supercontinuum generation in suspended-core chalcogenide and tellurite optical fibers
Summary form only given. The generation of optical supercontinua in the mid-infrared region and especially their expansion beyond the intrinsic limit dictated by fused silica is currently a subject of high interest. Tellurite and chalcogenide glasses have serious advantages because of their wide transmittance window which can reach more than 10 μm while the Kerr nonlinearity can be 500 times stronger than fused silica. These different features make them serious candidates for broad mid-infrared supercontinuum generation. For example, supercontinuum as broad as 4000-nm bandwidth has been generated in a sub-cm long Tellurite microstructured fiber by Domachuk et al. in ref. [1] by means of a f…
Management of OH absorption in tellurite optical fibers and related supercontinuum generation
Abstract We report the fabrication and the characterization of low OH content and low loss tellurite optical fibers. The influence of different methods of glass fabrication on fiber losses has been investigated. The use of the purest commercial raw materials can reduce the losses below 0.1 dB/m at 1.55 μm. Incorporation of fluoride ions into the tellurite glass matrix makes the optical fibers transparent up to 4 μm. A suspended core microstructured fiber has been fabricated and pumped by nanojoule-level femtosecond pulses, thus resulting in more than 2000-nm bandwidth supercontinuum after a few centimeters of propagation.
Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources
Made available in DSpace on 2013-08-28T14:12:29Z (GMT). No. of bitstreams: 1 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) Made available in DSpace on 2013-09-30T19:22:53Z (GMT). No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes, checksum: 1ca2ac713bf6024674249abf58520bcb (MD5) Previous issue date: 2010-12-06 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:34:00Z No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes,…