0000000000156867

AUTHOR

Sandy Adjemian

showing 3 related works from this author

Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death

2012

Some successful chemotherapeutics, notably anthracyclines and oxaliplatin, induce a type of cell stress and death that is immunogenic, hence converting the patient's dying cancer cells into a vaccine that stimulates antitumor immune responses. By means of a fluorescence microscopy platform that allows for the automated detection of the biochemical hallmarks of such a peculiar cell death modality, we identified cardiac glycosides (CGs) as exceptionally efficient inducers of immunogenic cell death, an effect that was associated with the in- hibition of the plasma membrane Na + - and K + -dependent adenosine triphosphatase (Na + /K + -ATPase). CGs ex- acerbated the antineoplastic effects of DN…

Programmed cell deathDigoxinOrganoplatinum Compoundsmedicine.medical_treatment[SDV]Life Sciences [q-bio]Antineoplastic AgentsBiosensing TechniquesBiologyPharmacologyCardiac Glycosides03 medical and health sciencesMice0302 clinical medicineImmune systemCell Line TumorNeoplasmsmedicineAnimalsHumansAnthracyclinesComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesChemotherapyGeneral Medicinemedicine.disease3. Good healthOxaliplatinOxaliplatinCell culture030220 oncology & carcinogenesisHepatocellular carcinomaCancer cellImmunogenic cell deathmedicine.drug
researchProduct

Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice

2011

Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recr…

Programmed cell deathcells cancer immunogenicity calreticulin exposure hmgb1Antineoplastic AgentsBiologyimmunogenicityNOMicechemistry.chemical_compoundAdenosine TriphosphateImmune systemCell Line TumorNeoplasmsAutophagyExtracellularAnimalsHumanscancerMice Inbred BALB CMultidisciplinaryCell DeathImmunogenicityAutophagyDendritic CellsMice Inbred C57BLhmgb1chemistryCell cultureCancer researchImmunogenic cell deathcellsMitoxantroneCalreticulinAdenosine triphosphatecalreticulin exposure
researchProduct

Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

2015

How dying tumor cells get noticed Besides killing tumor cells directly, some chemotherapies, such as anthracyclines, also activate the immune system to kill tumors. Vacchelli et al. discovered that in mice, anthracycline-induced antitumor immunity requires immune cells to express the protein formyl peptide receptor 1 (FPR1). Dendritic cells (DCs) near tumors expressed especially high amounts of FPR1. DCs normally capture fragments of dying tumor cells and use them to activate nearby T cells to kill tumors, but DCs lacking FPR1 failed to do this effectively. Individuals with breast or colon cancer expressing a variant of FPR1 and treated with anthracyclines showed poor metastasis-free and ov…

AnthracyclineColorectal cancermedicine.medical_treatmentT-LymphocytesBreast Neoplasmsmicrofluidic chipchemotherapyPolymorphism Single NucleotideFormyl peptide receptor 1immune responseMiceImmune systemImmunityCell Line TumorNeoplasmsmedicineLeukocytesAnimalsHumansAnthracyclinesAllelesAnnexin A1ChemotherapyMultidisciplinarybusiness.industryDendritic Cellsmedicine.diseaseReceptors Formyl PeptideImmunity InnateChemotherapy AdjuvantCancer cellImmunologyCancer researchFemalebusinessColorectal NeoplasmsAdjuvantFPR1 microfluidicScience (New York, N.Y.)
researchProduct