0000000000156874
AUTHOR
Raimund Marx
Observation of time-invariant coherence in a room temperature quantum simulator
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It has been recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnet…
Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magne…