0000000000157168

AUTHOR

A. Radu

showing 9 related works from this author

A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope.

2011

An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained …

Optical telescopesAMANDASelection proceduresRobust reconstructionMonte Carlo methodAtmospheric muonsReal-time applicationNeutrino telescope01 natural sciencesHigh Energy Physics - ExperimentFast algorithmsHigh Energy Physics - Experiment (hep-ex)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsDetectorMonte Carlo SimulationMonte Carlo methodsComputer simulationLIGHTddc:540Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAlgorithmAlgorithmsFLUXOnline monitoring[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeFOS: Physical sciencesTrack reconstructionOptical telescopeNuclear physicsMuon tracks0103 physical sciencesAngular resolutionLight sources010306 general physicsOptical follow-upDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)MuonANTARESneutrino telescope; track reconstruction010308 nuclear & particles physicsCharged particlesTrack (disk drive)track reconstructionAstronomy and Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics - Data Analysis Statistics and ProbabilityFISICA APLICADAATMOSPHERIC NEUTRINOSNeutrino telescopesSYSTEMData Analysis Statistics and Probability (physics.data-an)
researchProduct

Performance of the front-end electronics of the ANTARES neutrino telescope

2010

ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named Analogue Ring Samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the fu…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsOptical linkDigital dataFOS: Physical sciencesAnalog-to-digital converterNeutrino telescope01 natural sciencesMultiplexinglaw.inventionPhototubeApplication-specific integrated circuitPhotomultiplier tubelawASICs0103 physical sciences14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationPhysics010308 nuclear & particles physicsbusiness.industryASICAstrophysics::Instrumentation and Methods for AstrophysicsElectrical engineeringCIRCUITFront-end electronicsChip[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Física nuclearUNDERWATER DETECTORasic; front-end electronics; neutrino telescope; photomultiplier tubeAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSYSTEMNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

2010

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAtmospheric muonsFOS: Physical sciencesLINECosmic rayPotassium-4001 natural sciencesParticle detectorNuclear physicsPOTASSIUM-40NEUTRINO TELESCOPESatmospheric muons; depth intensity relation; potassium-400103 physical sciencesDepth intensity relation14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPotassium-40DetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsPERFORMANCEDEPTH INTENSITY RELATIONLIGHTNeutrino detector13. Climate actionddc:540Física nuclearHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SYSTEMLepton
researchProduct

Performance of the First ANTARES Detector Line

2009

In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.

MODULEPhysics::Instrumentation and DetectorsFOS: Physical sciencesAstrophysics01 natural sciencesNuclear physicsNEUTRINO TELESCOPESAngular distributionantares; deep-sea; first line; neutrino0103 physical sciencesNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]WATERAngular resolutionNEUTRINO TELESCOPE010306 general physicsATMOSPHERIC MUONSAstroparticle physicsPhysicsMuonANTARES010308 nuclear & particles physicsAstrophysics (astro-ph)DetectorDeep-seaAstronomy and AstrophysicsTime resolutionGeodesyMUON FLUXFirst lineSINGLEFísica nuclearUNDERWATER DETECTORLine (text file)NeutrinoSYSTEM
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct

The upgrade of the ALICE TPC with GEMs and continuous readout

2020

Journal of Instrumentation 16(03), P03022 (2021). doi:10.1088/1748-0221/16/03/P03022

Physics - Instrumentation and DetectorsComputer sciencePhysics::Instrumentation and DetectorsFOS: Physical sciences61001 natural sciences114 Physical sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0103 physical sciencesMicropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc)Electronicsddc:610Detectors and Experimental TechniquesInstrumentationphysics.ins-detMathematical PhysicsCMOS readout of gaseous detectorsLarge Hadron Collider010308 nuclear & particles physicsbusiness.industryDetectorTime projection Chambers (TPC)Readout electronicsInstrumentation and Detectors (physics.ins-det)ChipUpgradeGaseous imaging and tracking detectorsGas electron multiplierALICE (propellant)businessComputer hardware
researchProduct

Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

2010

The ANTARES high energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsMonte Carlo methodAtmospheric muonsFluxNeutrino telescope01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)WATER010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)DetectorAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAY CASCADES NEUTRINO TELESCOPE PERFORMANCE GENERATOR SYSTEM MODULE LIGHT WATER SITESITEMUON FLUXLIGHTddc:540Física nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsMODULEAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayParticle detectorCOSMIC-RAY CASCADESNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]depth-intensity relation0103 physical sciencesatmospheric muons; depth-intensity relation; neutrino telescope14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithRemote sensingatmospheric muonsDepth-intensity relation010308 nuclear & particles physicsneutrino telescopeAstronomy and AstrophysicsCOSMIC RAYSPERFORMANCEGENERATORMeasuring instrumentHigh Energy Physics::ExperimentUNDERWATER DETECTORSYSTEM
researchProduct

Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

2011

An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted …

Optical telescopesDense water formation010504 meteorology & atmospheric sciencesDense watersBoundary currentWave reflectionOptical photo-multiplier observationsSuspended loadWATER FORMATIONOceanography01 natural scienceslaw.inventionPhysics - GeophysicsObservational methodMediterranean sea86-02lawDeep MediteraneanSeabedPhosphorescenceDeep seaCurrent (stream)VARIABILITYOptical methodOceanographyAcoustic variables measurementNorthern boundary currentantares neutrino telescope; deep mediteranean; northern boundary current; acoustic adcp observations; episodic downward current; dense water formation; bioluminescence; optical photo-multiplier observationsFísica nuclearAcoustic Doppler Current ProfilerBioluminescenceAstrophysics - Instrumentation and Methods for AstrophysicsANTARES neutrino telescopeGeology[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Acoustic ADCP observationsCIRCULATIONFOS: Physical sciencesAquatic ScienceLIGURIAN SEAZooplanktonZooplanktonTelescopeAcoustic Doppler current profilerOCEANOPTICAL PHOTO-MULTIPLIERMediterranean Sea14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesLight reflectionANTARESAcoustic wave010505 oceanographyAdvectionDense waterElementary particlesZOOPLANKTON BIOMASSDoppler effectMARINE RESEARCHESGeophysics (physics.geo-ph)Boundary current[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Boundary currentsCONVECTION13. Climate actionFISICA APLICADAAdvectionEpisodic downward currentMediterranean Sea (Northwest)SYSTEMTelescopes
researchProduct

AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

2011

The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around - 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distanc…

Optical telescopesNuclear and High Energy PhysicsAcoustic devicesNeutrino detectionPreamplifierAmbient noise levelFOS: Physical sciencesLINENeutrino telescope01 natural sciencesOptical telescopeThermo-acoustic modelData acquisition0103 physical sciencesSHOWERSWATERPARTICLE-DETECTION14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationRemote sensingPhysicsANTARES010308 nuclear & particles physicsSensorsDetectorAstronomyElementary particlesAcoustic waveAMADEUSAcoustic neutrino detectionAcoustic wavesNeutrino detectorAcoustic variables measurementthermo-acoustic model; amadeus; neutrino telescope; acoustic neutrino detection; antaresFISICA APLICADAFísica nuclearNeutrinoNeutrino telescopesComputer hardware description languagesAstrophysics - Instrumentation and Methods for AstrophysicsSignal detection
researchProduct