0000000000158299

AUTHOR

Antonio Bonati

showing 5 related works from this author

Emerging Raf inhibitors

2009

The Raf/MAPK kinase/extracellular-signal-regulated kinase pathway is often activated by genetic alterations in upstream signaling molecules. An integral component of this pathway, BRAF, is also activated by mutation, especially in melanoma and thyroid cancers. The Raf/MAPK kinase/extracellular-signal-regulated kinase pathway has profound effects on proliferative, apoptotic and differentiation pathways as well as the sensitivity and resistance to chemotherapeutic drugs.This review discusses targeting of Raf which could control abnormal proliferation in cancer and other proliferative diseases. The important roles that genetics plays in the response of patients to Raf inhibitors is also evalua…

MAPK/ERK pathwayProto-Oncogene Proteins B-rafCell signalingMAP Kinase Signaling SystemSignal transductionrafmedicine.disease_causemekerkmedicineHumanscancerPharmacology (medical)raf inhibitorsExtracellular Signal-Regulated MAP KinasesMelanomaProtein Kinase InhibitorsPharmacologyapoptosis cancer ERK proliferative disorderssignal transductionMitogen-Activated Protein Kinase KinasesApoptosis; Cancer; ERK; Kinases; MEK; Proliferative disorders; Protein phosphorylation; Raf; Raf inhibitors; Signal transductionMutationproliferative disordersapoptosis; cancer; erk; kinases; mek; proliferative disorders; protein phosphorylation; raf; raf inhibitors; signal transduction read more: http://informahealthcare.com/doi/abs/10.1517/14728210903232633business.industryKinaseMelanomaapoptosisCancermedicine.diseaseXenograft Model Antitumor Assaysprotein phosphorylationCell Transformation Neoplastickinasessignal transduction read more: http://informahealthcare.com/doi/abs/10.1517/14728210903232633ApoptosisDrug Resistance NeoplasmCancer researchSignal transductionMitogen-Activated Protein Kinasesbusiness
researchProduct

Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health

2011

William H. Chappell 1 , Linda S. Steelman 1,2 , Jacquelyn M. Long 2 , Ruth C. Kempf 2 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Jorg Basecke 3 , Franca Stivala 4 , Marco Donia 4 , Paolo Fagone 4 , Graziella Malaponte 4 , Maria C. Mazzarino 4 , Ferdinando Nicoletti 4 , Massimo Libra 4 , Danijela Maksimovic-Ivanic 5 , Sanja Mijatovic 5 , Giuseppe Montalto 6 , Melchiorre Cervello 7 , Piotr Laidler 8 , Michele Milella 9 , Agostino Tafuri 10 , Antonio Bonati 11 , Camilla Evangelisti 12 , Lucio Cocco 12 , Alberto M. Martelli 12,13 , and James A. McCubrey 1 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University 2 Department of Physics, Greenville, N…

MAPK/ERK pathwayAgingmedicine.medical_treatmentDrug ResistancerafPI3KTargeted therapycombination therapyPhosphatidylinositol 3-Kinases0302 clinical medicineTARGETED THERAPYCANCER STEM CELLSNeoplasmsCancer Stem CellsMedicineExtracellular Signal-Regulated MAP Kinases0303 health sciencesCombination TherapybiologyTOR Serine-Threonine KinasesMTORHuman health Ras inhibitors MEK ERKTargeted TherapyDiscovery and development of mTOR inhibitors3. Good healthDRUG RESISTANCECell Transformation NeoplasticOncology030220 oncology & carcinogenesismTORraf KinasesPremature agingMAP Kinase Signaling SystemReviewsSenescence03 medical and health sciencesCell Line TumorHumansPTENProtein kinase BPI3K/AKT/mTOR pathway030304 developmental biologyMitogen-Activated Protein Kinase Kinasesbusiness.industryAKTAktagingPTEN PhosphohydrolaseRafTransplantationSENESCENCEImmunologyras Proteinsbiology.proteinCancer researchaging; akt; cancer stem cells; combination therapy; drug resistance; mtor; pi3k; raf; senescence; targeted therapybusinessProto-Oncogene Proteins c-akt
researchProduct

Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mtor pathways in controlling growth and sensitivity to therapy-implications for cancer and aging

2011

Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described …

MaleMAPK/ERK pathwayAgingMAP Kinase Signaling SystemCancer aging RAF MEK mTORApoptosisReviewBiologyPI3KModels BiologicalApoptosis; Cancer; Kinases; MEK; MTOR; PI3K; Protein phosphorylation; RAF; Signal transductionMicePhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineCancer stem cellNeoplasmscancerAnimalsHumansPTENProtein kinase BCellular SenescencePI3K/AKT/mTOR pathwayCell Proliferation030304 developmental biology0303 health sciencesKinaseTOR Serine-Threonine KinasesapoptosisPTEN PhosphohydrolaseRafCell BiologyMEKprotein phosphorylation3. Good healthCell biologyCrosstalk (biology)kinases030220 oncology & carcinogenesisMutationmTORCancer researchbiology.proteinFemaleraf KinasesProto-Oncogene Proteins c-aktCell agingsignal transduction
researchProduct

Targeting the Cancer Initiating Cell: The Ultimate Target for Cancer Therapy

2012

An area of therapeutic interest in cancer biology and treatment is targeting the cancer stem cell, more appropriately referred to as the cancer initiating cell (CIC). CICs comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts in genetically modified murine models. CICs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation and metastasis. CICs may lay dormant after various cancer therapies which eliminate the more rapidly proliferating bulk cancer (BC) mass. However, CICs may remerge after therapy is discontinued as they may represent cells which were either intrinsically resistant to the or…

PTENgerminal mutationchemotherapeuticmedicine.medical_treatmentAntineoplastic AgentsPI3KTargeted therapyMetastasisMice03 medical and health sciencesTARGETED THERAPY0302 clinical medicineCancer stem cellNeoplasmsradiologicalDrug DiscoverymedicineAnimalsHumansPTENAkt; mTOR; PI3K; PTEN; Targeted therapy; Therapeutic sensitivityPI3K/AKT/mTOR pathway030304 developmental biologyPharmacologyBiological Products0303 health sciencesbiologyAKTMTORAktCD44Wnt signaling pathwayCancertargeted therapymedicine.disease3. Good healththerapeutic sensitivityxenografts030220 oncology & carcinogenesisImmunologymTORNeoplastic Stem CellsCancer researchbiology.proteinCurrent Pharmaceutical Design
researchProduct

Emerging MEK inhibitors

2010

IMPORTANCE OF THE FIELD: The Ras/Raf/MEK/ERK pathway is often activated by genetic alterations in upstream signaling molecules. Integral components of this pathway such as Ras and B-Raf are also activated by mutation. The Ras/Raf/MEK/ERK pathway has profound effects on proliferative, apoptotic and differentiation pathways. This pathway can often be effectively silenced by MEK inhibitors. AREAS COVERED BY THIS REVIEW: This review will discuss targeting of MEK which could lead to novel methods to control abnormal proliferation which arises in cancer and other proliferative diseases. This review will cover the scientific literature from 1980 to present and is a follow on from a review which fo…

MAPK/ERK pathwayCell signalingAntineoplastic Agentsmedicine.disease_causemekerkEnzyme activatorNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsmedicineAnimalsHumansPharmacology (medical)Protein phosphorylationProtein Kinase InhibitorsMEK inhibitorsCell ProliferationCancerPharmacologyapoptosis; cancer; erk; kinases; mek; mek inhibitors; proliferative disorders; protein phosphorylation; signal transductionproliferative disordersMutationKinasebusiness.industryapoptosisApoptosiCancerDrugs InvestigationalMAP Kinase Kinase Kinasesmedicine.diseaseprotein phosphorylationCell biologyEnzyme ActivationTreatment OutcomekinasesChemotherapy AdjuvantRadiotherapy AdjuvantSignal transductionbusinesssignal transductionExpert Opinion on Emerging Drugs
researchProduct