0000000000160578

AUTHOR

Christina Dornack

Chemically Stressed Bacterial Communities in Anaerobic Digesters Exhibit Resilience and Ecological Flexibility

Anaerobic digestion is a technology known for its potential in terms of methane production. During the digestion process, multiple metabolites of high value are synthesized. However, recent works have demonstrated the high robustness and resilience of the involved microbiomes; these attributes make it difficult to manipulate them in such a way that a specific metabolite is predominantly produced. Therefore, an exact understanding of the manipulability of anaerobic microbiomes may open up a treasure box for bio-based industries. In the present work, the effect of nalidixic acid, γ-aminobutyric acid (GABA), and sodium phosphate on the microbiome of digested sewage sludge from a water treatmen…

research product

Ammonia removal during leach-bed acidification leads to optimized organic acid production from chicken manure

This work demonstrates the suitability of nitrogen removal during anaerobic acidification in batch configuration for a more efficient pre-treatment of chicken manure prior to anaerobic digestion. High loading rates corresponding to a total nitrogen input between 6.3 and 9.5 g L−1 allowed successful suppression of methanogenic archaea. To eliminate nitrogen, NH3-stripping and MAP (magnesium ammonium phosphate hexahydrate) precipitation were compared. In spite of decreased cell quantities detected using qPCR, removal of nitrogen caused an increase in volatile fatty acid (VFA) formation from 13 to 19%. The highest nitrogen removal during acidification (up to 29%) was achieved with three consec…

research product